Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

8\left(x^{3}+8z^{3}\right)
Factor out 8.
\left(x+2z\right)\left(x^{2}-2xz+4z^{2}\right)
Consider x^{3}+8z^{3}. Rewrite x^{3}+8z^{3} as x^{3}+\left(2z\right)^{3}. The sum of cubes can be factored using the rule: a^{3}+b^{3}=\left(a+b\right)\left(a^{2}-ab+b^{2}\right).
8\left(x+2z\right)\left(x^{2}-2xz+4z^{2}\right)
Rewrite the complete factored expression.