Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

8x^{2}-5x^{2}+91=0
Multiply x and x to get x^{2}.
3x^{2}+91=0
Combine 8x^{2} and -5x^{2} to get 3x^{2}.
3x^{2}=-91
Subtract 91 from both sides. Anything subtracted from zero gives its negation.
x^{2}=-\frac{91}{3}
Divide both sides by 3.
x=\frac{\sqrt{273}i}{3} x=-\frac{\sqrt{273}i}{3}
The equation is now solved.
8x^{2}-5x^{2}+91=0
Multiply x and x to get x^{2}.
3x^{2}+91=0
Combine 8x^{2} and -5x^{2} to get 3x^{2}.
x=\frac{0±\sqrt{0^{2}-4\times 3\times 91}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 0 for b, and 91 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 3\times 91}}{2\times 3}
Square 0.
x=\frac{0±\sqrt{-12\times 91}}{2\times 3}
Multiply -4 times 3.
x=\frac{0±\sqrt{-1092}}{2\times 3}
Multiply -12 times 91.
x=\frac{0±2\sqrt{273}i}{2\times 3}
Take the square root of -1092.
x=\frac{0±2\sqrt{273}i}{6}
Multiply 2 times 3.
x=\frac{\sqrt{273}i}{3}
Now solve the equation x=\frac{0±2\sqrt{273}i}{6} when ± is plus.
x=-\frac{\sqrt{273}i}{3}
Now solve the equation x=\frac{0±2\sqrt{273}i}{6} when ± is minus.
x=\frac{\sqrt{273}i}{3} x=-\frac{\sqrt{273}i}{3}
The equation is now solved.