Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

8x^{2}-5x+87-7x^{2}=5x
Subtract 7x^{2} from both sides.
x^{2}-5x+87=5x
Combine 8x^{2} and -7x^{2} to get x^{2}.
x^{2}-5x+87-5x=0
Subtract 5x from both sides.
x^{2}-10x+87=0
Combine -5x and -5x to get -10x.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 87}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -10 for b, and 87 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-10\right)±\sqrt{100-4\times 87}}{2}
Square -10.
x=\frac{-\left(-10\right)±\sqrt{100-348}}{2}
Multiply -4 times 87.
x=\frac{-\left(-10\right)±\sqrt{-248}}{2}
Add 100 to -348.
x=\frac{-\left(-10\right)±2\sqrt{62}i}{2}
Take the square root of -248.
x=\frac{10±2\sqrt{62}i}{2}
The opposite of -10 is 10.
x=\frac{10+2\sqrt{62}i}{2}
Now solve the equation x=\frac{10±2\sqrt{62}i}{2} when ± is plus. Add 10 to 2i\sqrt{62}.
x=5+\sqrt{62}i
Divide 10+2i\sqrt{62} by 2.
x=\frac{-2\sqrt{62}i+10}{2}
Now solve the equation x=\frac{10±2\sqrt{62}i}{2} when ± is minus. Subtract 2i\sqrt{62} from 10.
x=-\sqrt{62}i+5
Divide 10-2i\sqrt{62} by 2.
x=5+\sqrt{62}i x=-\sqrt{62}i+5
The equation is now solved.
8x^{2}-5x+87-7x^{2}=5x
Subtract 7x^{2} from both sides.
x^{2}-5x+87=5x
Combine 8x^{2} and -7x^{2} to get x^{2}.
x^{2}-5x+87-5x=0
Subtract 5x from both sides.
x^{2}-10x+87=0
Combine -5x and -5x to get -10x.
x^{2}-10x=-87
Subtract 87 from both sides. Anything subtracted from zero gives its negation.
x^{2}-10x+\left(-5\right)^{2}=-87+\left(-5\right)^{2}
Divide -10, the coefficient of the x term, by 2 to get -5. Then add the square of -5 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-10x+25=-87+25
Square -5.
x^{2}-10x+25=-62
Add -87 to 25.
\left(x-5\right)^{2}=-62
Factor x^{2}-10x+25. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-5\right)^{2}}=\sqrt{-62}
Take the square root of both sides of the equation.
x-5=\sqrt{62}i x-5=-\sqrt{62}i
Simplify.
x=5+\sqrt{62}i x=-\sqrt{62}i+5
Add 5 to both sides of the equation.