Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

8\left(x^{2}-5x\right)
Factor out 8.
x\left(x-5\right)
Consider x^{2}-5x. Factor out x.
8x\left(x-5\right)
Rewrite the complete factored expression.
8x^{2}-40x=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-40\right)±\sqrt{\left(-40\right)^{2}}}{2\times 8}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-40\right)±40}{2\times 8}
Take the square root of \left(-40\right)^{2}.
x=\frac{40±40}{2\times 8}
The opposite of -40 is 40.
x=\frac{40±40}{16}
Multiply 2 times 8.
x=\frac{80}{16}
Now solve the equation x=\frac{40±40}{16} when ± is plus. Add 40 to 40.
x=5
Divide 80 by 16.
x=\frac{0}{16}
Now solve the equation x=\frac{40±40}{16} when ± is minus. Subtract 40 from 40.
x=0
Divide 0 by 16.
8x^{2}-40x=8\left(x-5\right)x
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 5 for x_{1} and 0 for x_{2}.