Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

8x^{2}-4x-88+4x^{2}=8
Add 4x^{2} to both sides.
12x^{2}-4x-88=8
Combine 8x^{2} and 4x^{2} to get 12x^{2}.
12x^{2}-4x-88-8=0
Subtract 8 from both sides.
12x^{2}-4x-96=0
Subtract 8 from -88 to get -96.
3x^{2}-x-24=0
Divide both sides by 4.
a+b=-1 ab=3\left(-24\right)=-72
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 3x^{2}+ax+bx-24. To find a and b, set up a system to be solved.
1,-72 2,-36 3,-24 4,-18 6,-12 8,-9
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -72.
1-72=-71 2-36=-34 3-24=-21 4-18=-14 6-12=-6 8-9=-1
Calculate the sum for each pair.
a=-9 b=8
The solution is the pair that gives sum -1.
\left(3x^{2}-9x\right)+\left(8x-24\right)
Rewrite 3x^{2}-x-24 as \left(3x^{2}-9x\right)+\left(8x-24\right).
3x\left(x-3\right)+8\left(x-3\right)
Factor out 3x in the first and 8 in the second group.
\left(x-3\right)\left(3x+8\right)
Factor out common term x-3 by using distributive property.
x=3 x=-\frac{8}{3}
To find equation solutions, solve x-3=0 and 3x+8=0.
8x^{2}-4x-88+4x^{2}=8
Add 4x^{2} to both sides.
12x^{2}-4x-88=8
Combine 8x^{2} and 4x^{2} to get 12x^{2}.
12x^{2}-4x-88-8=0
Subtract 8 from both sides.
12x^{2}-4x-96=0
Subtract 8 from -88 to get -96.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 12\left(-96\right)}}{2\times 12}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 12 for a, -4 for b, and -96 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 12\left(-96\right)}}{2\times 12}
Square -4.
x=\frac{-\left(-4\right)±\sqrt{16-48\left(-96\right)}}{2\times 12}
Multiply -4 times 12.
x=\frac{-\left(-4\right)±\sqrt{16+4608}}{2\times 12}
Multiply -48 times -96.
x=\frac{-\left(-4\right)±\sqrt{4624}}{2\times 12}
Add 16 to 4608.
x=\frac{-\left(-4\right)±68}{2\times 12}
Take the square root of 4624.
x=\frac{4±68}{2\times 12}
The opposite of -4 is 4.
x=\frac{4±68}{24}
Multiply 2 times 12.
x=\frac{72}{24}
Now solve the equation x=\frac{4±68}{24} when ± is plus. Add 4 to 68.
x=3
Divide 72 by 24.
x=-\frac{64}{24}
Now solve the equation x=\frac{4±68}{24} when ± is minus. Subtract 68 from 4.
x=-\frac{8}{3}
Reduce the fraction \frac{-64}{24} to lowest terms by extracting and canceling out 8.
x=3 x=-\frac{8}{3}
The equation is now solved.
8x^{2}-4x-88+4x^{2}=8
Add 4x^{2} to both sides.
12x^{2}-4x-88=8
Combine 8x^{2} and 4x^{2} to get 12x^{2}.
12x^{2}-4x=8+88
Add 88 to both sides.
12x^{2}-4x=96
Add 8 and 88 to get 96.
\frac{12x^{2}-4x}{12}=\frac{96}{12}
Divide both sides by 12.
x^{2}+\left(-\frac{4}{12}\right)x=\frac{96}{12}
Dividing by 12 undoes the multiplication by 12.
x^{2}-\frac{1}{3}x=\frac{96}{12}
Reduce the fraction \frac{-4}{12} to lowest terms by extracting and canceling out 4.
x^{2}-\frac{1}{3}x=8
Divide 96 by 12.
x^{2}-\frac{1}{3}x+\left(-\frac{1}{6}\right)^{2}=8+\left(-\frac{1}{6}\right)^{2}
Divide -\frac{1}{3}, the coefficient of the x term, by 2 to get -\frac{1}{6}. Then add the square of -\frac{1}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1}{3}x+\frac{1}{36}=8+\frac{1}{36}
Square -\frac{1}{6} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{1}{3}x+\frac{1}{36}=\frac{289}{36}
Add 8 to \frac{1}{36}.
\left(x-\frac{1}{6}\right)^{2}=\frac{289}{36}
Factor x^{2}-\frac{1}{3}x+\frac{1}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{6}\right)^{2}}=\sqrt{\frac{289}{36}}
Take the square root of both sides of the equation.
x-\frac{1}{6}=\frac{17}{6} x-\frac{1}{6}=-\frac{17}{6}
Simplify.
x=3 x=-\frac{8}{3}
Add \frac{1}{6} to both sides of the equation.