Factor
2\left(2x-5\right)\left(2x-1\right)
Evaluate
8x^{2}-24x+10
Graph
Share
Copied to clipboard
2\left(4x^{2}-2x-10x+5\right)
Factor out 2.
4x^{2}-12x+5
Consider 4x^{2}-2x-10x+5. Multiply and combine like terms.
a+b=-12 ab=4\times 5=20
Consider 4x^{2}-12x+5. Factor the expression by grouping. First, the expression needs to be rewritten as 4x^{2}+ax+bx+5. To find a and b, set up a system to be solved.
-1,-20 -2,-10 -4,-5
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 20.
-1-20=-21 -2-10=-12 -4-5=-9
Calculate the sum for each pair.
a=-10 b=-2
The solution is the pair that gives sum -12.
\left(4x^{2}-10x\right)+\left(-2x+5\right)
Rewrite 4x^{2}-12x+5 as \left(4x^{2}-10x\right)+\left(-2x+5\right).
2x\left(2x-5\right)-\left(2x-5\right)
Factor out 2x in the first and -1 in the second group.
\left(2x-5\right)\left(2x-1\right)
Factor out common term 2x-5 by using distributive property.
2\left(2x-5\right)\left(2x-1\right)
Rewrite the complete factored expression.
8x^{2}-24x+10
Combine -4x and -20x to get -24x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}