Factor
\left(2x-5\right)\left(4x-5\right)
Evaluate
\left(2x-5\right)\left(4x-5\right)
Graph
Share
Copied to clipboard
a+b=-30 ab=8\times 25=200
Factor the expression by grouping. First, the expression needs to be rewritten as 8x^{2}+ax+bx+25. To find a and b, set up a system to be solved.
-1,-200 -2,-100 -4,-50 -5,-40 -8,-25 -10,-20
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 200.
-1-200=-201 -2-100=-102 -4-50=-54 -5-40=-45 -8-25=-33 -10-20=-30
Calculate the sum for each pair.
a=-20 b=-10
The solution is the pair that gives sum -30.
\left(8x^{2}-20x\right)+\left(-10x+25\right)
Rewrite 8x^{2}-30x+25 as \left(8x^{2}-20x\right)+\left(-10x+25\right).
4x\left(2x-5\right)-5\left(2x-5\right)
Factor out 4x in the first and -5 in the second group.
\left(2x-5\right)\left(4x-5\right)
Factor out common term 2x-5 by using distributive property.
8x^{2}-30x+25=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-30\right)±\sqrt{\left(-30\right)^{2}-4\times 8\times 25}}{2\times 8}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-30\right)±\sqrt{900-4\times 8\times 25}}{2\times 8}
Square -30.
x=\frac{-\left(-30\right)±\sqrt{900-32\times 25}}{2\times 8}
Multiply -4 times 8.
x=\frac{-\left(-30\right)±\sqrt{900-800}}{2\times 8}
Multiply -32 times 25.
x=\frac{-\left(-30\right)±\sqrt{100}}{2\times 8}
Add 900 to -800.
x=\frac{-\left(-30\right)±10}{2\times 8}
Take the square root of 100.
x=\frac{30±10}{2\times 8}
The opposite of -30 is 30.
x=\frac{30±10}{16}
Multiply 2 times 8.
x=\frac{40}{16}
Now solve the equation x=\frac{30±10}{16} when ± is plus. Add 30 to 10.
x=\frac{5}{2}
Reduce the fraction \frac{40}{16} to lowest terms by extracting and canceling out 8.
x=\frac{20}{16}
Now solve the equation x=\frac{30±10}{16} when ± is minus. Subtract 10 from 30.
x=\frac{5}{4}
Reduce the fraction \frac{20}{16} to lowest terms by extracting and canceling out 4.
8x^{2}-30x+25=8\left(x-\frac{5}{2}\right)\left(x-\frac{5}{4}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{5}{2} for x_{1} and \frac{5}{4} for x_{2}.
8x^{2}-30x+25=8\times \frac{2x-5}{2}\left(x-\frac{5}{4}\right)
Subtract \frac{5}{2} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
8x^{2}-30x+25=8\times \frac{2x-5}{2}\times \frac{4x-5}{4}
Subtract \frac{5}{4} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
8x^{2}-30x+25=8\times \frac{\left(2x-5\right)\left(4x-5\right)}{2\times 4}
Multiply \frac{2x-5}{2} times \frac{4x-5}{4} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
8x^{2}-30x+25=8\times \frac{\left(2x-5\right)\left(4x-5\right)}{8}
Multiply 2 times 4.
8x^{2}-30x+25=\left(2x-5\right)\left(4x-5\right)
Cancel out 8, the greatest common factor in 8 and 8.
x ^ 2 -\frac{15}{4}x +\frac{25}{8} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 8
r + s = \frac{15}{4} rs = \frac{25}{8}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{15}{8} - u s = \frac{15}{8} + u
Two numbers r and s sum up to \frac{15}{4} exactly when the average of the two numbers is \frac{1}{2}*\frac{15}{4} = \frac{15}{8}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{15}{8} - u) (\frac{15}{8} + u) = \frac{25}{8}
To solve for unknown quantity u, substitute these in the product equation rs = \frac{25}{8}
\frac{225}{64} - u^2 = \frac{25}{8}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = \frac{25}{8}-\frac{225}{64} = -\frac{25}{64}
Simplify the expression by subtracting \frac{225}{64} on both sides
u^2 = \frac{25}{64} u = \pm\sqrt{\frac{25}{64}} = \pm \frac{5}{8}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{15}{8} - \frac{5}{8} = 1.250 s = \frac{15}{8} + \frac{5}{8} = 2.500
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}