Factor
4\left(x-5\right)\left(2x+3\right)
Evaluate
4\left(x-5\right)\left(2x+3\right)
Graph
Share
Copied to clipboard
4\left(2x^{2}-7x-15\right)
Factor out 4.
a+b=-7 ab=2\left(-15\right)=-30
Consider 2x^{2}-7x-15. Factor the expression by grouping. First, the expression needs to be rewritten as 2x^{2}+ax+bx-15. To find a and b, set up a system to be solved.
1,-30 2,-15 3,-10 5,-6
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -30.
1-30=-29 2-15=-13 3-10=-7 5-6=-1
Calculate the sum for each pair.
a=-10 b=3
The solution is the pair that gives sum -7.
\left(2x^{2}-10x\right)+\left(3x-15\right)
Rewrite 2x^{2}-7x-15 as \left(2x^{2}-10x\right)+\left(3x-15\right).
2x\left(x-5\right)+3\left(x-5\right)
Factor out 2x in the first and 3 in the second group.
\left(x-5\right)\left(2x+3\right)
Factor out common term x-5 by using distributive property.
4\left(x-5\right)\left(2x+3\right)
Rewrite the complete factored expression.
8x^{2}-28x-60=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-28\right)±\sqrt{\left(-28\right)^{2}-4\times 8\left(-60\right)}}{2\times 8}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-28\right)±\sqrt{784-4\times 8\left(-60\right)}}{2\times 8}
Square -28.
x=\frac{-\left(-28\right)±\sqrt{784-32\left(-60\right)}}{2\times 8}
Multiply -4 times 8.
x=\frac{-\left(-28\right)±\sqrt{784+1920}}{2\times 8}
Multiply -32 times -60.
x=\frac{-\left(-28\right)±\sqrt{2704}}{2\times 8}
Add 784 to 1920.
x=\frac{-\left(-28\right)±52}{2\times 8}
Take the square root of 2704.
x=\frac{28±52}{2\times 8}
The opposite of -28 is 28.
x=\frac{28±52}{16}
Multiply 2 times 8.
x=\frac{80}{16}
Now solve the equation x=\frac{28±52}{16} when ± is plus. Add 28 to 52.
x=5
Divide 80 by 16.
x=-\frac{24}{16}
Now solve the equation x=\frac{28±52}{16} when ± is minus. Subtract 52 from 28.
x=-\frac{3}{2}
Reduce the fraction \frac{-24}{16} to lowest terms by extracting and canceling out 8.
8x^{2}-28x-60=8\left(x-5\right)\left(x-\left(-\frac{3}{2}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 5 for x_{1} and -\frac{3}{2} for x_{2}.
8x^{2}-28x-60=8\left(x-5\right)\left(x+\frac{3}{2}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
8x^{2}-28x-60=8\left(x-5\right)\times \frac{2x+3}{2}
Add \frac{3}{2} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
8x^{2}-28x-60=4\left(x-5\right)\left(2x+3\right)
Cancel out 2, the greatest common factor in 8 and 2.
x ^ 2 -\frac{7}{2}x -\frac{15}{2} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 8
r + s = \frac{7}{2} rs = -\frac{15}{2}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{7}{4} - u s = \frac{7}{4} + u
Two numbers r and s sum up to \frac{7}{2} exactly when the average of the two numbers is \frac{1}{2}*\frac{7}{2} = \frac{7}{4}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{7}{4} - u) (\frac{7}{4} + u) = -\frac{15}{2}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{15}{2}
\frac{49}{16} - u^2 = -\frac{15}{2}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{15}{2}-\frac{49}{16} = -\frac{169}{16}
Simplify the expression by subtracting \frac{49}{16} on both sides
u^2 = \frac{169}{16} u = \pm\sqrt{\frac{169}{16}} = \pm \frac{13}{4}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{7}{4} - \frac{13}{4} = -1.500 s = \frac{7}{4} + \frac{13}{4} = 5
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}