Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

8x^{2}-14x=6
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
8x^{2}-14x-6=6-6
Subtract 6 from both sides of the equation.
8x^{2}-14x-6=0
Subtracting 6 from itself leaves 0.
x=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}-4\times 8\left(-6\right)}}{2\times 8}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 8 for a, -14 for b, and -6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-14\right)±\sqrt{196-4\times 8\left(-6\right)}}{2\times 8}
Square -14.
x=\frac{-\left(-14\right)±\sqrt{196-32\left(-6\right)}}{2\times 8}
Multiply -4 times 8.
x=\frac{-\left(-14\right)±\sqrt{196+192}}{2\times 8}
Multiply -32 times -6.
x=\frac{-\left(-14\right)±\sqrt{388}}{2\times 8}
Add 196 to 192.
x=\frac{-\left(-14\right)±2\sqrt{97}}{2\times 8}
Take the square root of 388.
x=\frac{14±2\sqrt{97}}{2\times 8}
The opposite of -14 is 14.
x=\frac{14±2\sqrt{97}}{16}
Multiply 2 times 8.
x=\frac{2\sqrt{97}+14}{16}
Now solve the equation x=\frac{14±2\sqrt{97}}{16} when ± is plus. Add 14 to 2\sqrt{97}.
x=\frac{\sqrt{97}+7}{8}
Divide 14+2\sqrt{97} by 16.
x=\frac{14-2\sqrt{97}}{16}
Now solve the equation x=\frac{14±2\sqrt{97}}{16} when ± is minus. Subtract 2\sqrt{97} from 14.
x=\frac{7-\sqrt{97}}{8}
Divide 14-2\sqrt{97} by 16.
x=\frac{\sqrt{97}+7}{8} x=\frac{7-\sqrt{97}}{8}
The equation is now solved.
8x^{2}-14x=6
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{8x^{2}-14x}{8}=\frac{6}{8}
Divide both sides by 8.
x^{2}+\left(-\frac{14}{8}\right)x=\frac{6}{8}
Dividing by 8 undoes the multiplication by 8.
x^{2}-\frac{7}{4}x=\frac{6}{8}
Reduce the fraction \frac{-14}{8} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{7}{4}x=\frac{3}{4}
Reduce the fraction \frac{6}{8} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{7}{4}x+\left(-\frac{7}{8}\right)^{2}=\frac{3}{4}+\left(-\frac{7}{8}\right)^{2}
Divide -\frac{7}{4}, the coefficient of the x term, by 2 to get -\frac{7}{8}. Then add the square of -\frac{7}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{7}{4}x+\frac{49}{64}=\frac{3}{4}+\frac{49}{64}
Square -\frac{7}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{7}{4}x+\frac{49}{64}=\frac{97}{64}
Add \frac{3}{4} to \frac{49}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{7}{8}\right)^{2}=\frac{97}{64}
Factor x^{2}-\frac{7}{4}x+\frac{49}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{8}\right)^{2}}=\sqrt{\frac{97}{64}}
Take the square root of both sides of the equation.
x-\frac{7}{8}=\frac{\sqrt{97}}{8} x-\frac{7}{8}=-\frac{\sqrt{97}}{8}
Simplify.
x=\frac{\sqrt{97}+7}{8} x=\frac{7-\sqrt{97}}{8}
Add \frac{7}{8} to both sides of the equation.