8 x ^ { 2 } - 1 \text { sas } = - \frac { 1 } { 2 } i x
Solve for a
\left\{\begin{matrix}a=\frac{x\left(16x+i\right)}{2s^{2}}\text{, }&s\neq 0\\a\in \mathrm{C}\text{, }&\left(x=0\text{ or }x=-\frac{1}{16}i\right)\text{ and }s=0\end{matrix}\right.
Solve for s
\left\{\begin{matrix}s=-\frac{ia^{-\frac{1}{2}}\sqrt{2x}\sqrt{-i-16x}}{2}\text{; }s=\frac{ia^{-\frac{1}{2}}\sqrt{2x}\sqrt{-i-16x}}{2}\text{, }&a\neq 0\\s\in \mathrm{C}\text{, }&\left(x=0\text{ or }x=-\frac{1}{16}i\right)\text{ and }a=0\end{matrix}\right.
Share
Copied to clipboard
8x^{2}-s^{2}a=-\frac{1}{2}ix
Multiply s and s to get s^{2}.
-s^{2}a=-\frac{1}{2}ix-8x^{2}
Subtract 8x^{2} from both sides.
\left(-s^{2}\right)a=-8x^{2}-\frac{ix}{2}
The equation is in standard form.
\frac{\left(-s^{2}\right)a}{-s^{2}}=-\frac{\frac{x\left(16x+i\right)}{2}}{-s^{2}}
Divide both sides by -s^{2}.
a=-\frac{\frac{x\left(16x+i\right)}{2}}{-s^{2}}
Dividing by -s^{2} undoes the multiplication by -s^{2}.
a=\frac{x\left(16x+i\right)}{2s^{2}}
Divide -\frac{x\left(i+16x\right)}{2} by -s^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}