Solve for x
x = \frac{3}{2} = 1\frac{1}{2} = 1.5
x = \frac{5}{4} = 1\frac{1}{4} = 1.25
Graph
Share
Copied to clipboard
8x^{2}-22x=-15
Subtract 22x from both sides.
8x^{2}-22x+15=0
Add 15 to both sides.
a+b=-22 ab=8\times 15=120
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 8x^{2}+ax+bx+15. To find a and b, set up a system to be solved.
-1,-120 -2,-60 -3,-40 -4,-30 -5,-24 -6,-20 -8,-15 -10,-12
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 120.
-1-120=-121 -2-60=-62 -3-40=-43 -4-30=-34 -5-24=-29 -6-20=-26 -8-15=-23 -10-12=-22
Calculate the sum for each pair.
a=-12 b=-10
The solution is the pair that gives sum -22.
\left(8x^{2}-12x\right)+\left(-10x+15\right)
Rewrite 8x^{2}-22x+15 as \left(8x^{2}-12x\right)+\left(-10x+15\right).
4x\left(2x-3\right)-5\left(2x-3\right)
Factor out 4x in the first and -5 in the second group.
\left(2x-3\right)\left(4x-5\right)
Factor out common term 2x-3 by using distributive property.
x=\frac{3}{2} x=\frac{5}{4}
To find equation solutions, solve 2x-3=0 and 4x-5=0.
8x^{2}-22x=-15
Subtract 22x from both sides.
8x^{2}-22x+15=0
Add 15 to both sides.
x=\frac{-\left(-22\right)±\sqrt{\left(-22\right)^{2}-4\times 8\times 15}}{2\times 8}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 8 for a, -22 for b, and 15 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-22\right)±\sqrt{484-4\times 8\times 15}}{2\times 8}
Square -22.
x=\frac{-\left(-22\right)±\sqrt{484-32\times 15}}{2\times 8}
Multiply -4 times 8.
x=\frac{-\left(-22\right)±\sqrt{484-480}}{2\times 8}
Multiply -32 times 15.
x=\frac{-\left(-22\right)±\sqrt{4}}{2\times 8}
Add 484 to -480.
x=\frac{-\left(-22\right)±2}{2\times 8}
Take the square root of 4.
x=\frac{22±2}{2\times 8}
The opposite of -22 is 22.
x=\frac{22±2}{16}
Multiply 2 times 8.
x=\frac{24}{16}
Now solve the equation x=\frac{22±2}{16} when ± is plus. Add 22 to 2.
x=\frac{3}{2}
Reduce the fraction \frac{24}{16} to lowest terms by extracting and canceling out 8.
x=\frac{20}{16}
Now solve the equation x=\frac{22±2}{16} when ± is minus. Subtract 2 from 22.
x=\frac{5}{4}
Reduce the fraction \frac{20}{16} to lowest terms by extracting and canceling out 4.
x=\frac{3}{2} x=\frac{5}{4}
The equation is now solved.
8x^{2}-22x=-15
Subtract 22x from both sides.
\frac{8x^{2}-22x}{8}=-\frac{15}{8}
Divide both sides by 8.
x^{2}+\left(-\frac{22}{8}\right)x=-\frac{15}{8}
Dividing by 8 undoes the multiplication by 8.
x^{2}-\frac{11}{4}x=-\frac{15}{8}
Reduce the fraction \frac{-22}{8} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{11}{4}x+\left(-\frac{11}{8}\right)^{2}=-\frac{15}{8}+\left(-\frac{11}{8}\right)^{2}
Divide -\frac{11}{4}, the coefficient of the x term, by 2 to get -\frac{11}{8}. Then add the square of -\frac{11}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{11}{4}x+\frac{121}{64}=-\frac{15}{8}+\frac{121}{64}
Square -\frac{11}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{11}{4}x+\frac{121}{64}=\frac{1}{64}
Add -\frac{15}{8} to \frac{121}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{11}{8}\right)^{2}=\frac{1}{64}
Factor x^{2}-\frac{11}{4}x+\frac{121}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{11}{8}\right)^{2}}=\sqrt{\frac{1}{64}}
Take the square root of both sides of the equation.
x-\frac{11}{8}=\frac{1}{8} x-\frac{11}{8}=-\frac{1}{8}
Simplify.
x=\frac{3}{2} x=\frac{5}{4}
Add \frac{11}{8} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}