Solve for x
x=\sqrt{38}\approx 6.164414003
x=-\sqrt{38}\approx -6.164414003
Graph
Share
Copied to clipboard
8x^{2}=313-9
Subtract 9 from both sides.
8x^{2}=304
Subtract 9 from 313 to get 304.
x^{2}=\frac{304}{8}
Divide both sides by 8.
x^{2}=38
Divide 304 by 8 to get 38.
x=\sqrt{38} x=-\sqrt{38}
Take the square root of both sides of the equation.
8x^{2}+9-313=0
Subtract 313 from both sides.
8x^{2}-304=0
Subtract 313 from 9 to get -304.
x=\frac{0±\sqrt{0^{2}-4\times 8\left(-304\right)}}{2\times 8}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 8 for a, 0 for b, and -304 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 8\left(-304\right)}}{2\times 8}
Square 0.
x=\frac{0±\sqrt{-32\left(-304\right)}}{2\times 8}
Multiply -4 times 8.
x=\frac{0±\sqrt{9728}}{2\times 8}
Multiply -32 times -304.
x=\frac{0±16\sqrt{38}}{2\times 8}
Take the square root of 9728.
x=\frac{0±16\sqrt{38}}{16}
Multiply 2 times 8.
x=\sqrt{38}
Now solve the equation x=\frac{0±16\sqrt{38}}{16} when ± is plus.
x=-\sqrt{38}
Now solve the equation x=\frac{0±16\sqrt{38}}{16} when ± is minus.
x=\sqrt{38} x=-\sqrt{38}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}