Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

8x^{2}+8x-1=0
To solve the inequality, factor the left hand side. Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-8±\sqrt{8^{2}-4\times 8\left(-1\right)}}{2\times 8}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 8 for a, 8 for b, and -1 for c in the quadratic formula.
x=\frac{-8±4\sqrt{6}}{16}
Do the calculations.
x=\frac{\sqrt{6}}{4}-\frac{1}{2} x=-\frac{\sqrt{6}}{4}-\frac{1}{2}
Solve the equation x=\frac{-8±4\sqrt{6}}{16} when ± is plus and when ± is minus.
8\left(x-\left(\frac{\sqrt{6}}{4}-\frac{1}{2}\right)\right)\left(x-\left(-\frac{\sqrt{6}}{4}-\frac{1}{2}\right)\right)\leq 0
Rewrite the inequality by using the obtained solutions.
x-\left(\frac{\sqrt{6}}{4}-\frac{1}{2}\right)\geq 0 x-\left(-\frac{\sqrt{6}}{4}-\frac{1}{2}\right)\leq 0
For the product to be ≤0, one of the values x-\left(\frac{\sqrt{6}}{4}-\frac{1}{2}\right) and x-\left(-\frac{\sqrt{6}}{4}-\frac{1}{2}\right) has to be ≥0 and the other has to be ≤0. Consider the case when x-\left(\frac{\sqrt{6}}{4}-\frac{1}{2}\right)\geq 0 and x-\left(-\frac{\sqrt{6}}{4}-\frac{1}{2}\right)\leq 0.
x\in \emptyset
This is false for any x.
x-\left(-\frac{\sqrt{6}}{4}-\frac{1}{2}\right)\geq 0 x-\left(\frac{\sqrt{6}}{4}-\frac{1}{2}\right)\leq 0
Consider the case when x-\left(\frac{\sqrt{6}}{4}-\frac{1}{2}\right)\leq 0 and x-\left(-\frac{\sqrt{6}}{4}-\frac{1}{2}\right)\geq 0.
x\in \begin{bmatrix}-\frac{\sqrt{6}}{4}-\frac{1}{2},\frac{\sqrt{6}}{4}-\frac{1}{2}\end{bmatrix}
The solution satisfying both inequalities is x\in \left[-\frac{\sqrt{6}}{4}-\frac{1}{2},\frac{\sqrt{6}}{4}-\frac{1}{2}\right].
x\in \begin{bmatrix}-\frac{\sqrt{6}}{4}-\frac{1}{2},\frac{\sqrt{6}}{4}-\frac{1}{2}\end{bmatrix}
The final solution is the union of the obtained solutions.