Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

x\left(8x+25\right)
Factor out x.
8x^{2}+25x=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-25±\sqrt{25^{2}}}{2\times 8}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-25±25}{2\times 8}
Take the square root of 25^{2}.
x=\frac{-25±25}{16}
Multiply 2 times 8.
x=\frac{0}{16}
Now solve the equation x=\frac{-25±25}{16} when ± is plus. Add -25 to 25.
x=0
Divide 0 by 16.
x=-\frac{50}{16}
Now solve the equation x=\frac{-25±25}{16} when ± is minus. Subtract 25 from -25.
x=-\frac{25}{8}
Reduce the fraction \frac{-50}{16} to lowest terms by extracting and canceling out 2.
8x^{2}+25x=8x\left(x-\left(-\frac{25}{8}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 0 for x_{1} and -\frac{25}{8} for x_{2}.
8x^{2}+25x=8x\left(x+\frac{25}{8}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
8x^{2}+25x=8x\times \frac{8x+25}{8}
Add \frac{25}{8} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
8x^{2}+25x=x\left(8x+25\right)
Cancel out 8, the greatest common factor in 8 and 8.