Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

8x^{2}+16x-3184=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-16±\sqrt{16^{2}-4\times 8\left(-3184\right)}}{2\times 8}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-16±\sqrt{256-4\times 8\left(-3184\right)}}{2\times 8}
Square 16.
x=\frac{-16±\sqrt{256-32\left(-3184\right)}}{2\times 8}
Multiply -4 times 8.
x=\frac{-16±\sqrt{256+101888}}{2\times 8}
Multiply -32 times -3184.
x=\frac{-16±\sqrt{102144}}{2\times 8}
Add 256 to 101888.
x=\frac{-16±16\sqrt{399}}{2\times 8}
Take the square root of 102144.
x=\frac{-16±16\sqrt{399}}{16}
Multiply 2 times 8.
x=\frac{16\sqrt{399}-16}{16}
Now solve the equation x=\frac{-16±16\sqrt{399}}{16} when ± is plus. Add -16 to 16\sqrt{399}.
x=\sqrt{399}-1
Divide -16+16\sqrt{399} by 16.
x=\frac{-16\sqrt{399}-16}{16}
Now solve the equation x=\frac{-16±16\sqrt{399}}{16} when ± is minus. Subtract 16\sqrt{399} from -16.
x=-\sqrt{399}-1
Divide -16-16\sqrt{399} by 16.
8x^{2}+16x-3184=8\left(x-\left(\sqrt{399}-1\right)\right)\left(x-\left(-\sqrt{399}-1\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -1+\sqrt{399} for x_{1} and -1-\sqrt{399} for x_{2}.
x ^ 2 +2x -398 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 8
r + s = -2 rs = -398
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -1 - u s = -1 + u
Two numbers r and s sum up to -2 exactly when the average of the two numbers is \frac{1}{2}*-2 = -1. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-1 - u) (-1 + u) = -398
To solve for unknown quantity u, substitute these in the product equation rs = -398
1 - u^2 = -398
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -398-1 = -399
Simplify the expression by subtracting 1 on both sides
u^2 = 399 u = \pm\sqrt{399} = \pm \sqrt{399}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-1 - \sqrt{399} = -20.975 s = -1 + \sqrt{399} = 18.975
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.