Factor
2\left(x-8\right)\left(4x+99\right)
Evaluate
2\left(x-8\right)\left(4x+99\right)
Graph
Share
Copied to clipboard
2\left(4x^{2}+67x-792\right)
Factor out 2.
a+b=67 ab=4\left(-792\right)=-3168
Consider 4x^{2}+67x-792. Factor the expression by grouping. First, the expression needs to be rewritten as 4x^{2}+ax+bx-792. To find a and b, set up a system to be solved.
-1,3168 -2,1584 -3,1056 -4,792 -6,528 -8,396 -9,352 -11,288 -12,264 -16,198 -18,176 -22,144 -24,132 -32,99 -33,96 -36,88 -44,72 -48,66
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -3168.
-1+3168=3167 -2+1584=1582 -3+1056=1053 -4+792=788 -6+528=522 -8+396=388 -9+352=343 -11+288=277 -12+264=252 -16+198=182 -18+176=158 -22+144=122 -24+132=108 -32+99=67 -33+96=63 -36+88=52 -44+72=28 -48+66=18
Calculate the sum for each pair.
a=-32 b=99
The solution is the pair that gives sum 67.
\left(4x^{2}-32x\right)+\left(99x-792\right)
Rewrite 4x^{2}+67x-792 as \left(4x^{2}-32x\right)+\left(99x-792\right).
4x\left(x-8\right)+99\left(x-8\right)
Factor out 4x in the first and 99 in the second group.
\left(x-8\right)\left(4x+99\right)
Factor out common term x-8 by using distributive property.
2\left(x-8\right)\left(4x+99\right)
Rewrite the complete factored expression.
8x^{2}+134x-1584=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-134±\sqrt{134^{2}-4\times 8\left(-1584\right)}}{2\times 8}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-134±\sqrt{17956-4\times 8\left(-1584\right)}}{2\times 8}
Square 134.
x=\frac{-134±\sqrt{17956-32\left(-1584\right)}}{2\times 8}
Multiply -4 times 8.
x=\frac{-134±\sqrt{17956+50688}}{2\times 8}
Multiply -32 times -1584.
x=\frac{-134±\sqrt{68644}}{2\times 8}
Add 17956 to 50688.
x=\frac{-134±262}{2\times 8}
Take the square root of 68644.
x=\frac{-134±262}{16}
Multiply 2 times 8.
x=\frac{128}{16}
Now solve the equation x=\frac{-134±262}{16} when ± is plus. Add -134 to 262.
x=8
Divide 128 by 16.
x=-\frac{396}{16}
Now solve the equation x=\frac{-134±262}{16} when ± is minus. Subtract 262 from -134.
x=-\frac{99}{4}
Reduce the fraction \frac{-396}{16} to lowest terms by extracting and canceling out 4.
8x^{2}+134x-1584=8\left(x-8\right)\left(x-\left(-\frac{99}{4}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 8 for x_{1} and -\frac{99}{4} for x_{2}.
8x^{2}+134x-1584=8\left(x-8\right)\left(x+\frac{99}{4}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
8x^{2}+134x-1584=8\left(x-8\right)\times \frac{4x+99}{4}
Add \frac{99}{4} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
8x^{2}+134x-1584=2\left(x-8\right)\left(4x+99\right)
Cancel out 4, the greatest common factor in 8 and 4.
x ^ 2 +\frac{67}{4}x -198 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 8
r + s = -\frac{67}{4} rs = -198
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{67}{8} - u s = -\frac{67}{8} + u
Two numbers r and s sum up to -\frac{67}{4} exactly when the average of the two numbers is \frac{1}{2}*-\frac{67}{4} = -\frac{67}{8}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{67}{8} - u) (-\frac{67}{8} + u) = -198
To solve for unknown quantity u, substitute these in the product equation rs = -198
\frac{4489}{64} - u^2 = -198
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -198-\frac{4489}{64} = -\frac{17161}{64}
Simplify the expression by subtracting \frac{4489}{64} on both sides
u^2 = \frac{17161}{64} u = \pm\sqrt{\frac{17161}{64}} = \pm \frac{131}{8}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{67}{8} - \frac{131}{8} = -24.750 s = -\frac{67}{8} + \frac{131}{8} = 8
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}