Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

8x^{2}+112x-192=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-112±\sqrt{112^{2}-4\times 8\left(-192\right)}}{2\times 8}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-112±\sqrt{12544-4\times 8\left(-192\right)}}{2\times 8}
Square 112.
x=\frac{-112±\sqrt{12544-32\left(-192\right)}}{2\times 8}
Multiply -4 times 8.
x=\frac{-112±\sqrt{12544+6144}}{2\times 8}
Multiply -32 times -192.
x=\frac{-112±\sqrt{18688}}{2\times 8}
Add 12544 to 6144.
x=\frac{-112±16\sqrt{73}}{2\times 8}
Take the square root of 18688.
x=\frac{-112±16\sqrt{73}}{16}
Multiply 2 times 8.
x=\frac{16\sqrt{73}-112}{16}
Now solve the equation x=\frac{-112±16\sqrt{73}}{16} when ± is plus. Add -112 to 16\sqrt{73}.
x=\sqrt{73}-7
Divide -112+16\sqrt{73} by 16.
x=\frac{-16\sqrt{73}-112}{16}
Now solve the equation x=\frac{-112±16\sqrt{73}}{16} when ± is minus. Subtract 16\sqrt{73} from -112.
x=-\sqrt{73}-7
Divide -112-16\sqrt{73} by 16.
8x^{2}+112x-192=8\left(x-\left(\sqrt{73}-7\right)\right)\left(x-\left(-\sqrt{73}-7\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -7+\sqrt{73} for x_{1} and -7-\sqrt{73} for x_{2}.
x ^ 2 +14x -24 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 8
r + s = -14 rs = -24
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -7 - u s = -7 + u
Two numbers r and s sum up to -14 exactly when the average of the two numbers is \frac{1}{2}*-14 = -7. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-7 - u) (-7 + u) = -24
To solve for unknown quantity u, substitute these in the product equation rs = -24
49 - u^2 = -24
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -24-49 = -73
Simplify the expression by subtracting 49 on both sides
u^2 = 73 u = \pm\sqrt{73} = \pm \sqrt{73}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-7 - \sqrt{73} = -15.544 s = -7 + \sqrt{73} = 1.544
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.