Solve for x
x=\frac{\sqrt{2}}{4}-7\approx -6.646446609
x=-\frac{\sqrt{2}}{4}-7\approx -7.353553391
Graph
Share
Copied to clipboard
8x^{2}+112x+392=1
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
8x^{2}+112x+392-1=1-1
Subtract 1 from both sides of the equation.
8x^{2}+112x+392-1=0
Subtracting 1 from itself leaves 0.
8x^{2}+112x+391=0
Subtract 1 from 392.
x=\frac{-112±\sqrt{112^{2}-4\times 8\times 391}}{2\times 8}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 8 for a, 112 for b, and 391 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-112±\sqrt{12544-4\times 8\times 391}}{2\times 8}
Square 112.
x=\frac{-112±\sqrt{12544-32\times 391}}{2\times 8}
Multiply -4 times 8.
x=\frac{-112±\sqrt{12544-12512}}{2\times 8}
Multiply -32 times 391.
x=\frac{-112±\sqrt{32}}{2\times 8}
Add 12544 to -12512.
x=\frac{-112±4\sqrt{2}}{2\times 8}
Take the square root of 32.
x=\frac{-112±4\sqrt{2}}{16}
Multiply 2 times 8.
x=\frac{4\sqrt{2}-112}{16}
Now solve the equation x=\frac{-112±4\sqrt{2}}{16} when ± is plus. Add -112 to 4\sqrt{2}.
x=\frac{\sqrt{2}}{4}-7
Divide -112+4\sqrt{2} by 16.
x=\frac{-4\sqrt{2}-112}{16}
Now solve the equation x=\frac{-112±4\sqrt{2}}{16} when ± is minus. Subtract 4\sqrt{2} from -112.
x=-\frac{\sqrt{2}}{4}-7
Divide -112-4\sqrt{2} by 16.
x=\frac{\sqrt{2}}{4}-7 x=-\frac{\sqrt{2}}{4}-7
The equation is now solved.
8x^{2}+112x+392=1
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
8x^{2}+112x+392-392=1-392
Subtract 392 from both sides of the equation.
8x^{2}+112x=1-392
Subtracting 392 from itself leaves 0.
8x^{2}+112x=-391
Subtract 392 from 1.
\frac{8x^{2}+112x}{8}=-\frac{391}{8}
Divide both sides by 8.
x^{2}+\frac{112}{8}x=-\frac{391}{8}
Dividing by 8 undoes the multiplication by 8.
x^{2}+14x=-\frac{391}{8}
Divide 112 by 8.
x^{2}+14x+7^{2}=-\frac{391}{8}+7^{2}
Divide 14, the coefficient of the x term, by 2 to get 7. Then add the square of 7 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+14x+49=-\frac{391}{8}+49
Square 7.
x^{2}+14x+49=\frac{1}{8}
Add -\frac{391}{8} to 49.
\left(x+7\right)^{2}=\frac{1}{8}
Factor x^{2}+14x+49. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+7\right)^{2}}=\sqrt{\frac{1}{8}}
Take the square root of both sides of the equation.
x+7=\frac{\sqrt{2}}{4} x+7=-\frac{\sqrt{2}}{4}
Simplify.
x=\frac{\sqrt{2}}{4}-7 x=-\frac{\sqrt{2}}{4}-7
Subtract 7 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}