Solve for x
x=-\frac{5y}{8}+5
Solve for y
y=-\frac{8x}{5}+8
Graph
Share
Copied to clipboard
8x-40=-5y
Subtract 5y from both sides. Anything subtracted from zero gives its negation.
8x=-5y+40
Add 40 to both sides.
8x=40-5y
The equation is in standard form.
\frac{8x}{8}=\frac{40-5y}{8}
Divide both sides by 8.
x=\frac{40-5y}{8}
Dividing by 8 undoes the multiplication by 8.
x=-\frac{5y}{8}+5
Divide -5y+40 by 8.
5y-40=-8x
Subtract 8x from both sides. Anything subtracted from zero gives its negation.
5y=-8x+40
Add 40 to both sides.
5y=40-8x
The equation is in standard form.
\frac{5y}{5}=\frac{40-8x}{5}
Divide both sides by 5.
y=\frac{40-8x}{5}
Dividing by 5 undoes the multiplication by 5.
y=-\frac{8x}{5}+8
Divide -8x+40 by 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}