Solve for b
b=8+\frac{12}{x}
x\neq 0
Solve for x
x=-\frac{12}{8-b}
b\neq 8
Graph
Share
Copied to clipboard
bx-7=8x+5
Swap sides so that all variable terms are on the left hand side.
bx=8x+5+7
Add 7 to both sides.
bx=8x+12
Add 5 and 7 to get 12.
xb=8x+12
The equation is in standard form.
\frac{xb}{x}=\frac{8x+12}{x}
Divide both sides by x.
b=\frac{8x+12}{x}
Dividing by x undoes the multiplication by x.
b=8+\frac{12}{x}
Divide 8x+12 by x.
8x+5-bx=-7
Subtract bx from both sides.
8x-bx=-7-5
Subtract 5 from both sides.
8x-bx=-12
Subtract 5 from -7 to get -12.
\left(8-b\right)x=-12
Combine all terms containing x.
\frac{\left(8-b\right)x}{8-b}=-\frac{12}{8-b}
Divide both sides by 8-b.
x=-\frac{12}{8-b}
Dividing by 8-b undoes the multiplication by 8-b.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}