Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

2\left(4x+15x^{2}-3\right)
Factor out 2.
15x^{2}+4x-3
Consider 4x+15x^{2}-3. Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=4 ab=15\left(-3\right)=-45
Factor the expression by grouping. First, the expression needs to be rewritten as 15x^{2}+ax+bx-3. To find a and b, set up a system to be solved.
-1,45 -3,15 -5,9
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -45.
-1+45=44 -3+15=12 -5+9=4
Calculate the sum for each pair.
a=-5 b=9
The solution is the pair that gives sum 4.
\left(15x^{2}-5x\right)+\left(9x-3\right)
Rewrite 15x^{2}+4x-3 as \left(15x^{2}-5x\right)+\left(9x-3\right).
5x\left(3x-1\right)+3\left(3x-1\right)
Factor out 5x in the first and 3 in the second group.
\left(3x-1\right)\left(5x+3\right)
Factor out common term 3x-1 by using distributive property.
2\left(3x-1\right)\left(5x+3\right)
Rewrite the complete factored expression.
30x^{2}+8x-6=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-8±\sqrt{8^{2}-4\times 30\left(-6\right)}}{2\times 30}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-8±\sqrt{64-4\times 30\left(-6\right)}}{2\times 30}
Square 8.
x=\frac{-8±\sqrt{64-120\left(-6\right)}}{2\times 30}
Multiply -4 times 30.
x=\frac{-8±\sqrt{64+720}}{2\times 30}
Multiply -120 times -6.
x=\frac{-8±\sqrt{784}}{2\times 30}
Add 64 to 720.
x=\frac{-8±28}{2\times 30}
Take the square root of 784.
x=\frac{-8±28}{60}
Multiply 2 times 30.
x=\frac{20}{60}
Now solve the equation x=\frac{-8±28}{60} when ± is plus. Add -8 to 28.
x=\frac{1}{3}
Reduce the fraction \frac{20}{60} to lowest terms by extracting and canceling out 20.
x=-\frac{36}{60}
Now solve the equation x=\frac{-8±28}{60} when ± is minus. Subtract 28 from -8.
x=-\frac{3}{5}
Reduce the fraction \frac{-36}{60} to lowest terms by extracting and canceling out 12.
30x^{2}+8x-6=30\left(x-\frac{1}{3}\right)\left(x-\left(-\frac{3}{5}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{1}{3} for x_{1} and -\frac{3}{5} for x_{2}.
30x^{2}+8x-6=30\left(x-\frac{1}{3}\right)\left(x+\frac{3}{5}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
30x^{2}+8x-6=30\times \frac{3x-1}{3}\left(x+\frac{3}{5}\right)
Subtract \frac{1}{3} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
30x^{2}+8x-6=30\times \frac{3x-1}{3}\times \frac{5x+3}{5}
Add \frac{3}{5} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
30x^{2}+8x-6=30\times \frac{\left(3x-1\right)\left(5x+3\right)}{3\times 5}
Multiply \frac{3x-1}{3} times \frac{5x+3}{5} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
30x^{2}+8x-6=30\times \frac{\left(3x-1\right)\left(5x+3\right)}{15}
Multiply 3 times 5.
30x^{2}+8x-6=2\left(3x-1\right)\left(5x+3\right)
Cancel out 15, the greatest common factor in 30 and 15.