Solve for x
x=\frac{1229-105\sqrt{137}}{8}\approx 0.000813672
Graph
Share
Copied to clipboard
140\sqrt{x}=4-8x
Subtract 8x from both sides of the equation.
\left(140\sqrt{x}\right)^{2}=\left(4-8x\right)^{2}
Square both sides of the equation.
140^{2}\left(\sqrt{x}\right)^{2}=\left(4-8x\right)^{2}
Expand \left(140\sqrt{x}\right)^{2}.
19600\left(\sqrt{x}\right)^{2}=\left(4-8x\right)^{2}
Calculate 140 to the power of 2 and get 19600.
19600x=\left(4-8x\right)^{2}
Calculate \sqrt{x} to the power of 2 and get x.
19600x=16-64x+64x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4-8x\right)^{2}.
19600x-16=-64x+64x^{2}
Subtract 16 from both sides.
19600x-16+64x=64x^{2}
Add 64x to both sides.
19664x-16=64x^{2}
Combine 19600x and 64x to get 19664x.
19664x-16-64x^{2}=0
Subtract 64x^{2} from both sides.
-64x^{2}+19664x-16=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-19664±\sqrt{19664^{2}-4\left(-64\right)\left(-16\right)}}{2\left(-64\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -64 for a, 19664 for b, and -16 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-19664±\sqrt{386672896-4\left(-64\right)\left(-16\right)}}{2\left(-64\right)}
Square 19664.
x=\frac{-19664±\sqrt{386672896+256\left(-16\right)}}{2\left(-64\right)}
Multiply -4 times -64.
x=\frac{-19664±\sqrt{386672896-4096}}{2\left(-64\right)}
Multiply 256 times -16.
x=\frac{-19664±\sqrt{386668800}}{2\left(-64\right)}
Add 386672896 to -4096.
x=\frac{-19664±1680\sqrt{137}}{2\left(-64\right)}
Take the square root of 386668800.
x=\frac{-19664±1680\sqrt{137}}{-128}
Multiply 2 times -64.
x=\frac{1680\sqrt{137}-19664}{-128}
Now solve the equation x=\frac{-19664±1680\sqrt{137}}{-128} when ± is plus. Add -19664 to 1680\sqrt{137}.
x=\frac{1229-105\sqrt{137}}{8}
Divide -19664+1680\sqrt{137} by -128.
x=\frac{-1680\sqrt{137}-19664}{-128}
Now solve the equation x=\frac{-19664±1680\sqrt{137}}{-128} when ± is minus. Subtract 1680\sqrt{137} from -19664.
x=\frac{105\sqrt{137}+1229}{8}
Divide -19664-1680\sqrt{137} by -128.
x=\frac{1229-105\sqrt{137}}{8} x=\frac{105\sqrt{137}+1229}{8}
The equation is now solved.
8\times \frac{1229-105\sqrt{137}}{8}+140\sqrt{\frac{1229-105\sqrt{137}}{8}}=4
Substitute \frac{1229-105\sqrt{137}}{8} for x in the equation 8x+140\sqrt{x}=4.
4=4
Simplify. The value x=\frac{1229-105\sqrt{137}}{8} satisfies the equation.
8\times \frac{105\sqrt{137}+1229}{8}+140\sqrt{\frac{105\sqrt{137}+1229}{8}}=4
Substitute \frac{105\sqrt{137}+1229}{8} for x in the equation 8x+140\sqrt{x}=4.
210\times 137^{\frac{1}{2}}+2454=4
Simplify. The value x=\frac{105\sqrt{137}+1229}{8} does not satisfy the equation.
x=\frac{1229-105\sqrt{137}}{8}
Equation 140\sqrt{x}=4-8x has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}