Factor
8\left(w-g\right)\left(w+g\right)\left(w^{2}+g^{2}\right)\left(w^{4}+g^{4}\right)
Evaluate
8\left(w^{8}-g^{8}\right)
Share
Copied to clipboard
8\left(w^{8}-g^{8}\right)
Factor out 8.
\left(w^{4}-g^{4}\right)\left(w^{4}+g^{4}\right)
Consider w^{8}-g^{8}. Rewrite w^{8}-g^{8} as \left(w^{4}\right)^{2}-\left(g^{4}\right)^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(w^{2}-g^{2}\right)\left(w^{2}+g^{2}\right)
Consider w^{4}-g^{4}. Rewrite w^{4}-g^{4} as \left(w^{2}\right)^{2}-\left(g^{2}\right)^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(w-g\right)\left(w+g\right)
Consider w^{2}-g^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
8\left(w-g\right)\left(w+g\right)\left(w^{2}+g^{2}\right)\left(w^{4}+g^{4}\right)
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}