Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

8\left(w^{8}-g^{8}\right)
Factor out 8.
\left(w^{4}-g^{4}\right)\left(w^{4}+g^{4}\right)
Consider w^{8}-g^{8}. Rewrite w^{8}-g^{8} as \left(w^{4}\right)^{2}-\left(g^{4}\right)^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(w^{2}-g^{2}\right)\left(w^{2}+g^{2}\right)
Consider w^{4}-g^{4}. Rewrite w^{4}-g^{4} as \left(w^{2}\right)^{2}-\left(g^{2}\right)^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(w-g\right)\left(w+g\right)
Consider w^{2}-g^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
8\left(w-g\right)\left(w+g\right)\left(w^{2}+g^{2}\right)\left(w^{4}+g^{4}\right)
Rewrite the complete factored expression.