Solve for r
r=0
Share
Copied to clipboard
8r=2\times \frac{22}{7}r
Anything divided by one gives itself.
8r=\frac{2\times 22}{7}r
Express 2\times \frac{22}{7} as a single fraction.
8r=\frac{44}{7}r
Multiply 2 and 22 to get 44.
8r-\frac{44}{7}r=0
Subtract \frac{44}{7}r from both sides.
\frac{12}{7}r=0
Combine 8r and -\frac{44}{7}r to get \frac{12}{7}r.
r=0
Product of two numbers is equal to 0 if at least one of them is 0. Since \frac{12}{7} is not equal to 0, r must be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}