Skip to main content
Solve for q
Tick mark Image

Similar Problems from Web Search

Share

8q^{2}-16q+10=0
Use the distributive property to multiply 8q by q-2.
q=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}-4\times 8\times 10}}{2\times 8}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 8 for a, -16 for b, and 10 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
q=\frac{-\left(-16\right)±\sqrt{256-4\times 8\times 10}}{2\times 8}
Square -16.
q=\frac{-\left(-16\right)±\sqrt{256-32\times 10}}{2\times 8}
Multiply -4 times 8.
q=\frac{-\left(-16\right)±\sqrt{256-320}}{2\times 8}
Multiply -32 times 10.
q=\frac{-\left(-16\right)±\sqrt{-64}}{2\times 8}
Add 256 to -320.
q=\frac{-\left(-16\right)±8i}{2\times 8}
Take the square root of -64.
q=\frac{16±8i}{2\times 8}
The opposite of -16 is 16.
q=\frac{16±8i}{16}
Multiply 2 times 8.
q=\frac{16+8i}{16}
Now solve the equation q=\frac{16±8i}{16} when ± is plus. Add 16 to 8i.
q=1+\frac{1}{2}i
Divide 16+8i by 16.
q=\frac{16-8i}{16}
Now solve the equation q=\frac{16±8i}{16} when ± is minus. Subtract 8i from 16.
q=1-\frac{1}{2}i
Divide 16-8i by 16.
q=1+\frac{1}{2}i q=1-\frac{1}{2}i
The equation is now solved.
8q^{2}-16q+10=0
Use the distributive property to multiply 8q by q-2.
8q^{2}-16q=-10
Subtract 10 from both sides. Anything subtracted from zero gives its negation.
\frac{8q^{2}-16q}{8}=-\frac{10}{8}
Divide both sides by 8.
q^{2}+\left(-\frac{16}{8}\right)q=-\frac{10}{8}
Dividing by 8 undoes the multiplication by 8.
q^{2}-2q=-\frac{10}{8}
Divide -16 by 8.
q^{2}-2q=-\frac{5}{4}
Reduce the fraction \frac{-10}{8} to lowest terms by extracting and canceling out 2.
q^{2}-2q+1=-\frac{5}{4}+1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
q^{2}-2q+1=-\frac{1}{4}
Add -\frac{5}{4} to 1.
\left(q-1\right)^{2}=-\frac{1}{4}
Factor q^{2}-2q+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(q-1\right)^{2}}=\sqrt{-\frac{1}{4}}
Take the square root of both sides of the equation.
q-1=\frac{1}{2}i q-1=-\frac{1}{2}i
Simplify.
q=1+\frac{1}{2}i q=1-\frac{1}{2}i
Add 1 to both sides of the equation.