Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

p\left(8p+7\right)
Factor out p.
8p^{2}+7p=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
p=\frac{-7±\sqrt{7^{2}}}{2\times 8}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
p=\frac{-7±7}{2\times 8}
Take the square root of 7^{2}.
p=\frac{-7±7}{16}
Multiply 2 times 8.
p=\frac{0}{16}
Now solve the equation p=\frac{-7±7}{16} when ± is plus. Add -7 to 7.
p=0
Divide 0 by 16.
p=-\frac{14}{16}
Now solve the equation p=\frac{-7±7}{16} when ± is minus. Subtract 7 from -7.
p=-\frac{7}{8}
Reduce the fraction \frac{-14}{16} to lowest terms by extracting and canceling out 2.
8p^{2}+7p=8p\left(p-\left(-\frac{7}{8}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 0 for x_{1} and -\frac{7}{8} for x_{2}.
8p^{2}+7p=8p\left(p+\frac{7}{8}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
8p^{2}+7p=8p\times \frac{8p+7}{8}
Add \frac{7}{8} to p by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
8p^{2}+7p=p\left(8p+7\right)
Cancel out 8, the greatest common factor in 8 and 8.