Skip to main content
Solve for n
Tick mark Image

Similar Problems from Web Search

Share

8n^{2}-4\left(1-2n\right)\left(2+8n\right)=0
Multiply -1 and 4 to get -4.
8n^{2}+\left(-4+8n\right)\left(2+8n\right)=0
Use the distributive property to multiply -4 by 1-2n.
8n^{2}-8-16n+64n^{2}=0
Use the distributive property to multiply -4+8n by 2+8n and combine like terms.
72n^{2}-8-16n=0
Combine 8n^{2} and 64n^{2} to get 72n^{2}.
72n^{2}-16n-8=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
n=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}-4\times 72\left(-8\right)}}{2\times 72}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 72 for a, -16 for b, and -8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-\left(-16\right)±\sqrt{256-4\times 72\left(-8\right)}}{2\times 72}
Square -16.
n=\frac{-\left(-16\right)±\sqrt{256-288\left(-8\right)}}{2\times 72}
Multiply -4 times 72.
n=\frac{-\left(-16\right)±\sqrt{256+2304}}{2\times 72}
Multiply -288 times -8.
n=\frac{-\left(-16\right)±\sqrt{2560}}{2\times 72}
Add 256 to 2304.
n=\frac{-\left(-16\right)±16\sqrt{10}}{2\times 72}
Take the square root of 2560.
n=\frac{16±16\sqrt{10}}{2\times 72}
The opposite of -16 is 16.
n=\frac{16±16\sqrt{10}}{144}
Multiply 2 times 72.
n=\frac{16\sqrt{10}+16}{144}
Now solve the equation n=\frac{16±16\sqrt{10}}{144} when ± is plus. Add 16 to 16\sqrt{10}.
n=\frac{\sqrt{10}+1}{9}
Divide 16+16\sqrt{10} by 144.
n=\frac{16-16\sqrt{10}}{144}
Now solve the equation n=\frac{16±16\sqrt{10}}{144} when ± is minus. Subtract 16\sqrt{10} from 16.
n=\frac{1-\sqrt{10}}{9}
Divide 16-16\sqrt{10} by 144.
n=\frac{\sqrt{10}+1}{9} n=\frac{1-\sqrt{10}}{9}
The equation is now solved.
8n^{2}-4\left(1-2n\right)\left(2+8n\right)=0
Multiply -1 and 4 to get -4.
8n^{2}+\left(-4+8n\right)\left(2+8n\right)=0
Use the distributive property to multiply -4 by 1-2n.
8n^{2}-8-16n+64n^{2}=0
Use the distributive property to multiply -4+8n by 2+8n and combine like terms.
72n^{2}-8-16n=0
Combine 8n^{2} and 64n^{2} to get 72n^{2}.
72n^{2}-16n=8
Add 8 to both sides. Anything plus zero gives itself.
\frac{72n^{2}-16n}{72}=\frac{8}{72}
Divide both sides by 72.
n^{2}+\left(-\frac{16}{72}\right)n=\frac{8}{72}
Dividing by 72 undoes the multiplication by 72.
n^{2}-\frac{2}{9}n=\frac{8}{72}
Reduce the fraction \frac{-16}{72} to lowest terms by extracting and canceling out 8.
n^{2}-\frac{2}{9}n=\frac{1}{9}
Reduce the fraction \frac{8}{72} to lowest terms by extracting and canceling out 8.
n^{2}-\frac{2}{9}n+\left(-\frac{1}{9}\right)^{2}=\frac{1}{9}+\left(-\frac{1}{9}\right)^{2}
Divide -\frac{2}{9}, the coefficient of the x term, by 2 to get -\frac{1}{9}. Then add the square of -\frac{1}{9} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}-\frac{2}{9}n+\frac{1}{81}=\frac{1}{9}+\frac{1}{81}
Square -\frac{1}{9} by squaring both the numerator and the denominator of the fraction.
n^{2}-\frac{2}{9}n+\frac{1}{81}=\frac{10}{81}
Add \frac{1}{9} to \frac{1}{81} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(n-\frac{1}{9}\right)^{2}=\frac{10}{81}
Factor n^{2}-\frac{2}{9}n+\frac{1}{81}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n-\frac{1}{9}\right)^{2}}=\sqrt{\frac{10}{81}}
Take the square root of both sides of the equation.
n-\frac{1}{9}=\frac{\sqrt{10}}{9} n-\frac{1}{9}=-\frac{\sqrt{10}}{9}
Simplify.
n=\frac{\sqrt{10}+1}{9} n=\frac{1-\sqrt{10}}{9}
Add \frac{1}{9} to both sides of the equation.