Solve for n
n = \frac{\sqrt{62809} + 53}{8} \approx 37.952154754
n=\frac{53-\sqrt{62809}}{8}\approx -24.702154754
Share
Copied to clipboard
8n^{2}-106n-7500=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
n=\frac{-\left(-106\right)±\sqrt{\left(-106\right)^{2}-4\times 8\left(-7500\right)}}{2\times 8}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 8 for a, -106 for b, and -7500 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-\left(-106\right)±\sqrt{11236-4\times 8\left(-7500\right)}}{2\times 8}
Square -106.
n=\frac{-\left(-106\right)±\sqrt{11236-32\left(-7500\right)}}{2\times 8}
Multiply -4 times 8.
n=\frac{-\left(-106\right)±\sqrt{11236+240000}}{2\times 8}
Multiply -32 times -7500.
n=\frac{-\left(-106\right)±\sqrt{251236}}{2\times 8}
Add 11236 to 240000.
n=\frac{-\left(-106\right)±2\sqrt{62809}}{2\times 8}
Take the square root of 251236.
n=\frac{106±2\sqrt{62809}}{2\times 8}
The opposite of -106 is 106.
n=\frac{106±2\sqrt{62809}}{16}
Multiply 2 times 8.
n=\frac{2\sqrt{62809}+106}{16}
Now solve the equation n=\frac{106±2\sqrt{62809}}{16} when ± is plus. Add 106 to 2\sqrt{62809}.
n=\frac{\sqrt{62809}+53}{8}
Divide 106+2\sqrt{62809} by 16.
n=\frac{106-2\sqrt{62809}}{16}
Now solve the equation n=\frac{106±2\sqrt{62809}}{16} when ± is minus. Subtract 2\sqrt{62809} from 106.
n=\frac{53-\sqrt{62809}}{8}
Divide 106-2\sqrt{62809} by 16.
n=\frac{\sqrt{62809}+53}{8} n=\frac{53-\sqrt{62809}}{8}
The equation is now solved.
8n^{2}-106n-7500=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
8n^{2}-106n-7500-\left(-7500\right)=-\left(-7500\right)
Add 7500 to both sides of the equation.
8n^{2}-106n=-\left(-7500\right)
Subtracting -7500 from itself leaves 0.
8n^{2}-106n=7500
Subtract -7500 from 0.
\frac{8n^{2}-106n}{8}=\frac{7500}{8}
Divide both sides by 8.
n^{2}+\left(-\frac{106}{8}\right)n=\frac{7500}{8}
Dividing by 8 undoes the multiplication by 8.
n^{2}-\frac{53}{4}n=\frac{7500}{8}
Reduce the fraction \frac{-106}{8} to lowest terms by extracting and canceling out 2.
n^{2}-\frac{53}{4}n=\frac{1875}{2}
Reduce the fraction \frac{7500}{8} to lowest terms by extracting and canceling out 4.
n^{2}-\frac{53}{4}n+\left(-\frac{53}{8}\right)^{2}=\frac{1875}{2}+\left(-\frac{53}{8}\right)^{2}
Divide -\frac{53}{4}, the coefficient of the x term, by 2 to get -\frac{53}{8}. Then add the square of -\frac{53}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}-\frac{53}{4}n+\frac{2809}{64}=\frac{1875}{2}+\frac{2809}{64}
Square -\frac{53}{8} by squaring both the numerator and the denominator of the fraction.
n^{2}-\frac{53}{4}n+\frac{2809}{64}=\frac{62809}{64}
Add \frac{1875}{2} to \frac{2809}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(n-\frac{53}{8}\right)^{2}=\frac{62809}{64}
Factor n^{2}-\frac{53}{4}n+\frac{2809}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n-\frac{53}{8}\right)^{2}}=\sqrt{\frac{62809}{64}}
Take the square root of both sides of the equation.
n-\frac{53}{8}=\frac{\sqrt{62809}}{8} n-\frac{53}{8}=-\frac{\sqrt{62809}}{8}
Simplify.
n=\frac{\sqrt{62809}+53}{8} n=\frac{53-\sqrt{62809}}{8}
Add \frac{53}{8} to both sides of the equation.
x ^ 2 -\frac{53}{4}x -\frac{1875}{2} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 8
r + s = \frac{53}{4} rs = -\frac{1875}{2}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{53}{8} - u s = \frac{53}{8} + u
Two numbers r and s sum up to \frac{53}{4} exactly when the average of the two numbers is \frac{1}{2}*\frac{53}{4} = \frac{53}{8}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{53}{8} - u) (\frac{53}{8} + u) = -\frac{1875}{2}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{1875}{2}
\frac{2809}{64} - u^2 = -\frac{1875}{2}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{1875}{2}-\frac{2809}{64} = -\frac{62809}{64}
Simplify the expression by subtracting \frac{2809}{64} on both sides
u^2 = \frac{62809}{64} u = \pm\sqrt{\frac{62809}{64}} = \pm \frac{\sqrt{62809}}{8}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{53}{8} - \frac{\sqrt{62809}}{8} = -24.702 s = \frac{53}{8} + \frac{\sqrt{62809}}{8} = 37.952
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}