Solve for n
n=-3i
n=3i
Share
Copied to clipboard
8n^{2}=-72
Subtract 72 from both sides. Anything subtracted from zero gives its negation.
n^{2}=\frac{-72}{8}
Divide both sides by 8.
n^{2}=-9
Divide -72 by 8 to get -9.
n=3i n=-3i
The equation is now solved.
8n^{2}+72=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
n=\frac{0±\sqrt{0^{2}-4\times 8\times 72}}{2\times 8}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 8 for a, 0 for b, and 72 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{0±\sqrt{-4\times 8\times 72}}{2\times 8}
Square 0.
n=\frac{0±\sqrt{-32\times 72}}{2\times 8}
Multiply -4 times 8.
n=\frac{0±\sqrt{-2304}}{2\times 8}
Multiply -32 times 72.
n=\frac{0±48i}{2\times 8}
Take the square root of -2304.
n=\frac{0±48i}{16}
Multiply 2 times 8.
n=3i
Now solve the equation n=\frac{0±48i}{16} when ± is plus.
n=-3i
Now solve the equation n=\frac{0±48i}{16} when ± is minus.
n=3i n=-3i
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}