Solve for n
n = \frac{2 \sqrt{37} - 2}{9} \approx 1.129502785
n=\frac{-2\sqrt{37}-2}{9}\approx -1.573947229
Share
Copied to clipboard
8n^{2}+4n-16+n^{2}=0
Add n^{2} to both sides.
9n^{2}+4n-16=0
Combine 8n^{2} and n^{2} to get 9n^{2}.
n=\frac{-4±\sqrt{4^{2}-4\times 9\left(-16\right)}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, 4 for b, and -16 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-4±\sqrt{16-4\times 9\left(-16\right)}}{2\times 9}
Square 4.
n=\frac{-4±\sqrt{16-36\left(-16\right)}}{2\times 9}
Multiply -4 times 9.
n=\frac{-4±\sqrt{16+576}}{2\times 9}
Multiply -36 times -16.
n=\frac{-4±\sqrt{592}}{2\times 9}
Add 16 to 576.
n=\frac{-4±4\sqrt{37}}{2\times 9}
Take the square root of 592.
n=\frac{-4±4\sqrt{37}}{18}
Multiply 2 times 9.
n=\frac{4\sqrt{37}-4}{18}
Now solve the equation n=\frac{-4±4\sqrt{37}}{18} when ± is plus. Add -4 to 4\sqrt{37}.
n=\frac{2\sqrt{37}-2}{9}
Divide -4+4\sqrt{37} by 18.
n=\frac{-4\sqrt{37}-4}{18}
Now solve the equation n=\frac{-4±4\sqrt{37}}{18} when ± is minus. Subtract 4\sqrt{37} from -4.
n=\frac{-2\sqrt{37}-2}{9}
Divide -4-4\sqrt{37} by 18.
n=\frac{2\sqrt{37}-2}{9} n=\frac{-2\sqrt{37}-2}{9}
The equation is now solved.
8n^{2}+4n-16+n^{2}=0
Add n^{2} to both sides.
9n^{2}+4n-16=0
Combine 8n^{2} and n^{2} to get 9n^{2}.
9n^{2}+4n=16
Add 16 to both sides. Anything plus zero gives itself.
\frac{9n^{2}+4n}{9}=\frac{16}{9}
Divide both sides by 9.
n^{2}+\frac{4}{9}n=\frac{16}{9}
Dividing by 9 undoes the multiplication by 9.
n^{2}+\frac{4}{9}n+\left(\frac{2}{9}\right)^{2}=\frac{16}{9}+\left(\frac{2}{9}\right)^{2}
Divide \frac{4}{9}, the coefficient of the x term, by 2 to get \frac{2}{9}. Then add the square of \frac{2}{9} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}+\frac{4}{9}n+\frac{4}{81}=\frac{16}{9}+\frac{4}{81}
Square \frac{2}{9} by squaring both the numerator and the denominator of the fraction.
n^{2}+\frac{4}{9}n+\frac{4}{81}=\frac{148}{81}
Add \frac{16}{9} to \frac{4}{81} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(n+\frac{2}{9}\right)^{2}=\frac{148}{81}
Factor n^{2}+\frac{4}{9}n+\frac{4}{81}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n+\frac{2}{9}\right)^{2}}=\sqrt{\frac{148}{81}}
Take the square root of both sides of the equation.
n+\frac{2}{9}=\frac{2\sqrt{37}}{9} n+\frac{2}{9}=-\frac{2\sqrt{37}}{9}
Simplify.
n=\frac{2\sqrt{37}-2}{9} n=\frac{-2\sqrt{37}-2}{9}
Subtract \frac{2}{9} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}