Solve for n
n=5\sqrt{2}-2\approx 5.071067812
n=-5\sqrt{2}-2\approx -9.071067812
Share
Copied to clipboard
2n^{2}+8n-92=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
n=\frac{-8±\sqrt{8^{2}-4\times 2\left(-92\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 8 for b, and -92 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-8±\sqrt{64-4\times 2\left(-92\right)}}{2\times 2}
Square 8.
n=\frac{-8±\sqrt{64-8\left(-92\right)}}{2\times 2}
Multiply -4 times 2.
n=\frac{-8±\sqrt{64+736}}{2\times 2}
Multiply -8 times -92.
n=\frac{-8±\sqrt{800}}{2\times 2}
Add 64 to 736.
n=\frac{-8±20\sqrt{2}}{2\times 2}
Take the square root of 800.
n=\frac{-8±20\sqrt{2}}{4}
Multiply 2 times 2.
n=\frac{20\sqrt{2}-8}{4}
Now solve the equation n=\frac{-8±20\sqrt{2}}{4} when ± is plus. Add -8 to 20\sqrt{2}.
n=5\sqrt{2}-2
Divide -8+20\sqrt{2} by 4.
n=\frac{-20\sqrt{2}-8}{4}
Now solve the equation n=\frac{-8±20\sqrt{2}}{4} when ± is minus. Subtract 20\sqrt{2} from -8.
n=-5\sqrt{2}-2
Divide -8-20\sqrt{2} by 4.
n=5\sqrt{2}-2 n=-5\sqrt{2}-2
The equation is now solved.
2n^{2}+8n-92=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
2n^{2}+8n-92-\left(-92\right)=-\left(-92\right)
Add 92 to both sides of the equation.
2n^{2}+8n=-\left(-92\right)
Subtracting -92 from itself leaves 0.
2n^{2}+8n=92
Subtract -92 from 0.
\frac{2n^{2}+8n}{2}=\frac{92}{2}
Divide both sides by 2.
n^{2}+\frac{8}{2}n=\frac{92}{2}
Dividing by 2 undoes the multiplication by 2.
n^{2}+4n=\frac{92}{2}
Divide 8 by 2.
n^{2}+4n=46
Divide 92 by 2.
n^{2}+4n+2^{2}=46+2^{2}
Divide 4, the coefficient of the x term, by 2 to get 2. Then add the square of 2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}+4n+4=46+4
Square 2.
n^{2}+4n+4=50
Add 46 to 4.
\left(n+2\right)^{2}=50
Factor n^{2}+4n+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n+2\right)^{2}}=\sqrt{50}
Take the square root of both sides of the equation.
n+2=5\sqrt{2} n+2=-5\sqrt{2}
Simplify.
n=5\sqrt{2}-2 n=-5\sqrt{2}-2
Subtract 2 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}