Factor
\left(2d-1\right)\left(4d-9\right)
Evaluate
\left(2d-1\right)\left(4d-9\right)
Share
Copied to clipboard
a+b=-22 ab=8\times 9=72
Factor the expression by grouping. First, the expression needs to be rewritten as 8d^{2}+ad+bd+9. To find a and b, set up a system to be solved.
-1,-72 -2,-36 -3,-24 -4,-18 -6,-12 -8,-9
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 72.
-1-72=-73 -2-36=-38 -3-24=-27 -4-18=-22 -6-12=-18 -8-9=-17
Calculate the sum for each pair.
a=-18 b=-4
The solution is the pair that gives sum -22.
\left(8d^{2}-18d\right)+\left(-4d+9\right)
Rewrite 8d^{2}-22d+9 as \left(8d^{2}-18d\right)+\left(-4d+9\right).
2d\left(4d-9\right)-\left(4d-9\right)
Factor out 2d in the first and -1 in the second group.
\left(4d-9\right)\left(2d-1\right)
Factor out common term 4d-9 by using distributive property.
8d^{2}-22d+9=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
d=\frac{-\left(-22\right)±\sqrt{\left(-22\right)^{2}-4\times 8\times 9}}{2\times 8}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
d=\frac{-\left(-22\right)±\sqrt{484-4\times 8\times 9}}{2\times 8}
Square -22.
d=\frac{-\left(-22\right)±\sqrt{484-32\times 9}}{2\times 8}
Multiply -4 times 8.
d=\frac{-\left(-22\right)±\sqrt{484-288}}{2\times 8}
Multiply -32 times 9.
d=\frac{-\left(-22\right)±\sqrt{196}}{2\times 8}
Add 484 to -288.
d=\frac{-\left(-22\right)±14}{2\times 8}
Take the square root of 196.
d=\frac{22±14}{2\times 8}
The opposite of -22 is 22.
d=\frac{22±14}{16}
Multiply 2 times 8.
d=\frac{36}{16}
Now solve the equation d=\frac{22±14}{16} when ± is plus. Add 22 to 14.
d=\frac{9}{4}
Reduce the fraction \frac{36}{16} to lowest terms by extracting and canceling out 4.
d=\frac{8}{16}
Now solve the equation d=\frac{22±14}{16} when ± is minus. Subtract 14 from 22.
d=\frac{1}{2}
Reduce the fraction \frac{8}{16} to lowest terms by extracting and canceling out 8.
8d^{2}-22d+9=8\left(d-\frac{9}{4}\right)\left(d-\frac{1}{2}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{9}{4} for x_{1} and \frac{1}{2} for x_{2}.
8d^{2}-22d+9=8\times \frac{4d-9}{4}\left(d-\frac{1}{2}\right)
Subtract \frac{9}{4} from d by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
8d^{2}-22d+9=8\times \frac{4d-9}{4}\times \frac{2d-1}{2}
Subtract \frac{1}{2} from d by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
8d^{2}-22d+9=8\times \frac{\left(4d-9\right)\left(2d-1\right)}{4\times 2}
Multiply \frac{4d-9}{4} times \frac{2d-1}{2} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
8d^{2}-22d+9=8\times \frac{\left(4d-9\right)\left(2d-1\right)}{8}
Multiply 4 times 2.
8d^{2}-22d+9=\left(4d-9\right)\left(2d-1\right)
Cancel out 8, the greatest common factor in 8 and 8.
x ^ 2 -\frac{11}{4}x +\frac{9}{8} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 8
r + s = \frac{11}{4} rs = \frac{9}{8}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{11}{8} - u s = \frac{11}{8} + u
Two numbers r and s sum up to \frac{11}{4} exactly when the average of the two numbers is \frac{1}{2}*\frac{11}{4} = \frac{11}{8}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{11}{8} - u) (\frac{11}{8} + u) = \frac{9}{8}
To solve for unknown quantity u, substitute these in the product equation rs = \frac{9}{8}
\frac{121}{64} - u^2 = \frac{9}{8}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = \frac{9}{8}-\frac{121}{64} = -\frac{49}{64}
Simplify the expression by subtracting \frac{121}{64} on both sides
u^2 = \frac{49}{64} u = \pm\sqrt{\frac{49}{64}} = \pm \frac{7}{8}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{11}{8} - \frac{7}{8} = 0.500 s = \frac{11}{8} + \frac{7}{8} = 2.250
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}