Solve for c
c=-2
c=\frac{3}{8}=0.375
Share
Copied to clipboard
8c^{2}+13c-6=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=13 ab=8\left(-6\right)=-48
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 8c^{2}+ac+bc-6. To find a and b, set up a system to be solved.
-1,48 -2,24 -3,16 -4,12 -6,8
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -48.
-1+48=47 -2+24=22 -3+16=13 -4+12=8 -6+8=2
Calculate the sum for each pair.
a=-3 b=16
The solution is the pair that gives sum 13.
\left(8c^{2}-3c\right)+\left(16c-6\right)
Rewrite 8c^{2}+13c-6 as \left(8c^{2}-3c\right)+\left(16c-6\right).
c\left(8c-3\right)+2\left(8c-3\right)
Factor out c in the first and 2 in the second group.
\left(8c-3\right)\left(c+2\right)
Factor out common term 8c-3 by using distributive property.
c=\frac{3}{8} c=-2
To find equation solutions, solve 8c-3=0 and c+2=0.
8c^{2}+13c-6=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
c=\frac{-13±\sqrt{13^{2}-4\times 8\left(-6\right)}}{2\times 8}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 8 for a, 13 for b, and -6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
c=\frac{-13±\sqrt{169-4\times 8\left(-6\right)}}{2\times 8}
Square 13.
c=\frac{-13±\sqrt{169-32\left(-6\right)}}{2\times 8}
Multiply -4 times 8.
c=\frac{-13±\sqrt{169+192}}{2\times 8}
Multiply -32 times -6.
c=\frac{-13±\sqrt{361}}{2\times 8}
Add 169 to 192.
c=\frac{-13±19}{2\times 8}
Take the square root of 361.
c=\frac{-13±19}{16}
Multiply 2 times 8.
c=\frac{6}{16}
Now solve the equation c=\frac{-13±19}{16} when ± is plus. Add -13 to 19.
c=\frac{3}{8}
Reduce the fraction \frac{6}{16} to lowest terms by extracting and canceling out 2.
c=-\frac{32}{16}
Now solve the equation c=\frac{-13±19}{16} when ± is minus. Subtract 19 from -13.
c=-2
Divide -32 by 16.
c=\frac{3}{8} c=-2
The equation is now solved.
8c^{2}+13c-6=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
8c^{2}+13c-6-\left(-6\right)=-\left(-6\right)
Add 6 to both sides of the equation.
8c^{2}+13c=-\left(-6\right)
Subtracting -6 from itself leaves 0.
8c^{2}+13c=6
Subtract -6 from 0.
\frac{8c^{2}+13c}{8}=\frac{6}{8}
Divide both sides by 8.
c^{2}+\frac{13}{8}c=\frac{6}{8}
Dividing by 8 undoes the multiplication by 8.
c^{2}+\frac{13}{8}c=\frac{3}{4}
Reduce the fraction \frac{6}{8} to lowest terms by extracting and canceling out 2.
c^{2}+\frac{13}{8}c+\left(\frac{13}{16}\right)^{2}=\frac{3}{4}+\left(\frac{13}{16}\right)^{2}
Divide \frac{13}{8}, the coefficient of the x term, by 2 to get \frac{13}{16}. Then add the square of \frac{13}{16} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
c^{2}+\frac{13}{8}c+\frac{169}{256}=\frac{3}{4}+\frac{169}{256}
Square \frac{13}{16} by squaring both the numerator and the denominator of the fraction.
c^{2}+\frac{13}{8}c+\frac{169}{256}=\frac{361}{256}
Add \frac{3}{4} to \frac{169}{256} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(c+\frac{13}{16}\right)^{2}=\frac{361}{256}
Factor c^{2}+\frac{13}{8}c+\frac{169}{256}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(c+\frac{13}{16}\right)^{2}}=\sqrt{\frac{361}{256}}
Take the square root of both sides of the equation.
c+\frac{13}{16}=\frac{19}{16} c+\frac{13}{16}=-\frac{19}{16}
Simplify.
c=\frac{3}{8} c=-2
Subtract \frac{13}{16} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}