Factor
b\left(8b+7\right)
Evaluate
b\left(8b+7\right)
Share
Copied to clipboard
b\left(8b+7\right)
Factor out b.
8b^{2}+7b=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
b=\frac{-7±\sqrt{7^{2}}}{2\times 8}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
b=\frac{-7±7}{2\times 8}
Take the square root of 7^{2}.
b=\frac{-7±7}{16}
Multiply 2 times 8.
b=\frac{0}{16}
Now solve the equation b=\frac{-7±7}{16} when ± is plus. Add -7 to 7.
b=0
Divide 0 by 16.
b=-\frac{14}{16}
Now solve the equation b=\frac{-7±7}{16} when ± is minus. Subtract 7 from -7.
b=-\frac{7}{8}
Reduce the fraction \frac{-14}{16} to lowest terms by extracting and canceling out 2.
8b^{2}+7b=8b\left(b-\left(-\frac{7}{8}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 0 for x_{1} and -\frac{7}{8} for x_{2}.
8b^{2}+7b=8b\left(b+\frac{7}{8}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
8b^{2}+7b=8b\times \frac{8b+7}{8}
Add \frac{7}{8} to b by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
8b^{2}+7b=b\left(8b+7\right)
Cancel out 8, the greatest common factor in 8 and 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}