Skip to main content
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

8a^{2}\times 6=104
Multiply a and a to get a^{2}.
48a^{2}=104
Multiply 8 and 6 to get 48.
a^{2}=\frac{104}{48}
Divide both sides by 48.
a^{2}=\frac{13}{6}
Reduce the fraction \frac{104}{48} to lowest terms by extracting and canceling out 8.
a=\frac{\sqrt{78}}{6} a=-\frac{\sqrt{78}}{6}
Take the square root of both sides of the equation.
8a^{2}\times 6=104
Multiply a and a to get a^{2}.
48a^{2}=104
Multiply 8 and 6 to get 48.
48a^{2}-104=0
Subtract 104 from both sides.
a=\frac{0±\sqrt{0^{2}-4\times 48\left(-104\right)}}{2\times 48}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 48 for a, 0 for b, and -104 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{0±\sqrt{-4\times 48\left(-104\right)}}{2\times 48}
Square 0.
a=\frac{0±\sqrt{-192\left(-104\right)}}{2\times 48}
Multiply -4 times 48.
a=\frac{0±\sqrt{19968}}{2\times 48}
Multiply -192 times -104.
a=\frac{0±16\sqrt{78}}{2\times 48}
Take the square root of 19968.
a=\frac{0±16\sqrt{78}}{96}
Multiply 2 times 48.
a=\frac{\sqrt{78}}{6}
Now solve the equation a=\frac{0±16\sqrt{78}}{96} when ± is plus.
a=-\frac{\sqrt{78}}{6}
Now solve the equation a=\frac{0±16\sqrt{78}}{96} when ± is minus.
a=\frac{\sqrt{78}}{6} a=-\frac{\sqrt{78}}{6}
The equation is now solved.