Solve for a
a = \frac{\sqrt{78}}{6} \approx 1.471960144
a = -\frac{\sqrt{78}}{6} \approx -1.471960144
Share
Copied to clipboard
8a^{2}\times 6=104
Multiply a and a to get a^{2}.
48a^{2}=104
Multiply 8 and 6 to get 48.
a^{2}=\frac{104}{48}
Divide both sides by 48.
a^{2}=\frac{13}{6}
Reduce the fraction \frac{104}{48} to lowest terms by extracting and canceling out 8.
a=\frac{\sqrt{78}}{6} a=-\frac{\sqrt{78}}{6}
Take the square root of both sides of the equation.
8a^{2}\times 6=104
Multiply a and a to get a^{2}.
48a^{2}=104
Multiply 8 and 6 to get 48.
48a^{2}-104=0
Subtract 104 from both sides.
a=\frac{0±\sqrt{0^{2}-4\times 48\left(-104\right)}}{2\times 48}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 48 for a, 0 for b, and -104 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{0±\sqrt{-4\times 48\left(-104\right)}}{2\times 48}
Square 0.
a=\frac{0±\sqrt{-192\left(-104\right)}}{2\times 48}
Multiply -4 times 48.
a=\frac{0±\sqrt{19968}}{2\times 48}
Multiply -192 times -104.
a=\frac{0±16\sqrt{78}}{2\times 48}
Take the square root of 19968.
a=\frac{0±16\sqrt{78}}{96}
Multiply 2 times 48.
a=\frac{\sqrt{78}}{6}
Now solve the equation a=\frac{0±16\sqrt{78}}{96} when ± is plus.
a=-\frac{\sqrt{78}}{6}
Now solve the equation a=\frac{0±16\sqrt{78}}{96} when ± is minus.
a=\frac{\sqrt{78}}{6} a=-\frac{\sqrt{78}}{6}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}