Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

8\left(a^{3}x^{4}+8b^{6}x\right)
Factor out 8.
x\left(a^{3}x^{3}+8b^{6}\right)
Consider a^{3}x^{4}+8b^{6}x. Factor out x.
\left(ax+2b^{2}\right)\left(a^{2}x^{2}-2axb^{2}+4b^{4}\right)
Consider a^{3}x^{3}+8b^{6}. Rewrite a^{3}x^{3}+8b^{6} as \left(ax\right)^{3}+\left(2b^{2}\right)^{3}. The sum of cubes can be factored using the rule: p^{3}+q^{3}=\left(p+q\right)\left(p^{2}-pq+q^{2}\right).
8x\left(ax+2b^{2}\right)\left(a^{2}x^{2}-2axb^{2}+4b^{4}\right)
Rewrite the complete factored expression.