Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

4\left(2a^{2}+a\right)
Factor out 4.
a\left(2a+1\right)
Consider 2a^{2}+a. Factor out a.
4a\left(2a+1\right)
Rewrite the complete factored expression.
8a^{2}+4a=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
a=\frac{-4±\sqrt{4^{2}}}{2\times 8}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-4±4}{2\times 8}
Take the square root of 4^{2}.
a=\frac{-4±4}{16}
Multiply 2 times 8.
a=\frac{0}{16}
Now solve the equation a=\frac{-4±4}{16} when ± is plus. Add -4 to 4.
a=0
Divide 0 by 16.
a=-\frac{8}{16}
Now solve the equation a=\frac{-4±4}{16} when ± is minus. Subtract 4 from -4.
a=-\frac{1}{2}
Reduce the fraction \frac{-8}{16} to lowest terms by extracting and canceling out 8.
8a^{2}+4a=8a\left(a-\left(-\frac{1}{2}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 0 for x_{1} and -\frac{1}{2} for x_{2}.
8a^{2}+4a=8a\left(a+\frac{1}{2}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
8a^{2}+4a=8a\times \frac{2a+1}{2}
Add \frac{1}{2} to a by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
8a^{2}+4a=4a\left(2a+1\right)
Cancel out 2, the greatest common factor in 8 and 2.