Solve for a
\left\{\begin{matrix}a=-\frac{4b+2c-23}{b+8}\text{, }&b\neq -8\\a\in \mathrm{R}\text{, }&b=-8\text{ and }c=\frac{55}{2}\end{matrix}\right.
Solve for b
\left\{\begin{matrix}b=-\frac{8a+2c-23}{a+4}\text{, }&a\neq -4\\b\in \mathrm{R}\text{, }&a=-4\text{ and }c=\frac{55}{2}\end{matrix}\right.
Share
Copied to clipboard
8a+2c+ab=23-4b
Subtract 4b from both sides.
8a+ab=23-4b-2c
Subtract 2c from both sides.
\left(8+b\right)a=23-4b-2c
Combine all terms containing a.
\left(b+8\right)a=23-2c-4b
The equation is in standard form.
\frac{\left(b+8\right)a}{b+8}=\frac{23-2c-4b}{b+8}
Divide both sides by 8+b.
a=\frac{23-2c-4b}{b+8}
Dividing by 8+b undoes the multiplication by 8+b.
4b+2c+ab=23-8a
Subtract 8a from both sides.
4b+ab=23-8a-2c
Subtract 2c from both sides.
\left(4+a\right)b=23-8a-2c
Combine all terms containing b.
\left(a+4\right)b=23-2c-8a
The equation is in standard form.
\frac{\left(a+4\right)b}{a+4}=\frac{23-2c-8a}{a+4}
Divide both sides by 4+a.
b=\frac{23-2c-8a}{a+4}
Dividing by 4+a undoes the multiplication by 4+a.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}