Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

-2x^{2}-x+8=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-2\right)\times 8}}{2\left(-2\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-1\right)±\sqrt{1+8\times 8}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-\left(-1\right)±\sqrt{1+64}}{2\left(-2\right)}
Multiply 8 times 8.
x=\frac{-\left(-1\right)±\sqrt{65}}{2\left(-2\right)}
Add 1 to 64.
x=\frac{1±\sqrt{65}}{2\left(-2\right)}
The opposite of -1 is 1.
x=\frac{1±\sqrt{65}}{-4}
Multiply 2 times -2.
x=\frac{\sqrt{65}+1}{-4}
Now solve the equation x=\frac{1±\sqrt{65}}{-4} when ± is plus. Add 1 to \sqrt{65}.
x=\frac{-\sqrt{65}-1}{4}
Divide 1+\sqrt{65} by -4.
x=\frac{1-\sqrt{65}}{-4}
Now solve the equation x=\frac{1±\sqrt{65}}{-4} when ± is minus. Subtract \sqrt{65} from 1.
x=\frac{\sqrt{65}-1}{4}
Divide 1-\sqrt{65} by -4.
-2x^{2}-x+8=-2\left(x-\frac{-\sqrt{65}-1}{4}\right)\left(x-\frac{\sqrt{65}-1}{4}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-1-\sqrt{65}}{4} for x_{1} and \frac{-1+\sqrt{65}}{4} for x_{2}.