Solve for t
t=0
Share
Copied to clipboard
\left(8-t\right)^{2}=\left(\sqrt{5t^{2}+64-16t}\right)^{2}
Square both sides of the equation.
64-16t+t^{2}=\left(\sqrt{5t^{2}+64-16t}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(8-t\right)^{2}.
64-16t+t^{2}=5t^{2}+64-16t
Calculate \sqrt{5t^{2}+64-16t} to the power of 2 and get 5t^{2}+64-16t.
64-16t+t^{2}-5t^{2}=64-16t
Subtract 5t^{2} from both sides.
64-16t-4t^{2}=64-16t
Combine t^{2} and -5t^{2} to get -4t^{2}.
64-16t-4t^{2}+16t=64
Add 16t to both sides.
64-4t^{2}=64
Combine -16t and 16t to get 0.
-4t^{2}=64-64
Subtract 64 from both sides.
-4t^{2}=0
Subtract 64 from 64 to get 0.
t^{2}=0
Divide both sides by -4. Zero divided by any non-zero number gives zero.
t=0 t=0
Take the square root of both sides of the equation.
t=0
The equation is now solved. Solutions are the same.
8-0=\sqrt{5\times 0^{2}+64-16\times 0}
Substitute 0 for t in the equation 8-t=\sqrt{5t^{2}+64-16t}.
8=8
Simplify. The value t=0 satisfies the equation.
t=0
Equation 8-t=\sqrt{5t^{2}-16t+64} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}