Verify
true
Share
Copied to clipboard
8-\frac{5\times 2}{3}-0.7=\frac{119}{30}
Express 5\times \frac{2}{3} as a single fraction.
8-\frac{10}{3}-0.7=\frac{119}{30}
Multiply 5 and 2 to get 10.
\frac{24}{3}-\frac{10}{3}-0.7=\frac{119}{30}
Convert 8 to fraction \frac{24}{3}.
\frac{24-10}{3}-0.7=\frac{119}{30}
Since \frac{24}{3} and \frac{10}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{14}{3}-0.7=\frac{119}{30}
Subtract 10 from 24 to get 14.
\frac{14}{3}-\frac{7}{10}=\frac{119}{30}
Convert decimal number 0.7 to fraction \frac{7}{10}.
\frac{140}{30}-\frac{21}{30}=\frac{119}{30}
Least common multiple of 3 and 10 is 30. Convert \frac{14}{3} and \frac{7}{10} to fractions with denominator 30.
\frac{140-21}{30}=\frac{119}{30}
Since \frac{140}{30} and \frac{21}{30} have the same denominator, subtract them by subtracting their numerators.
\frac{119}{30}=\frac{119}{30}
Subtract 21 from 140 to get 119.
\text{true}
Compare \frac{119}{30} and \frac{119}{30}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}