Solve for x
x=\frac{2\sqrt{231}-2}{115}\approx 0.246933637
x=\frac{-2\sqrt{231}-2}{115}\approx -0.281716246
Graph
Share
Copied to clipboard
-115x^{2}-4x+8=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-115\right)\times 8}}{2\left(-115\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -115 for a, -4 for b, and 8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-115\right)\times 8}}{2\left(-115\right)}
Square -4.
x=\frac{-\left(-4\right)±\sqrt{16+460\times 8}}{2\left(-115\right)}
Multiply -4 times -115.
x=\frac{-\left(-4\right)±\sqrt{16+3680}}{2\left(-115\right)}
Multiply 460 times 8.
x=\frac{-\left(-4\right)±\sqrt{3696}}{2\left(-115\right)}
Add 16 to 3680.
x=\frac{-\left(-4\right)±4\sqrt{231}}{2\left(-115\right)}
Take the square root of 3696.
x=\frac{4±4\sqrt{231}}{2\left(-115\right)}
The opposite of -4 is 4.
x=\frac{4±4\sqrt{231}}{-230}
Multiply 2 times -115.
x=\frac{4\sqrt{231}+4}{-230}
Now solve the equation x=\frac{4±4\sqrt{231}}{-230} when ± is plus. Add 4 to 4\sqrt{231}.
x=\frac{-2\sqrt{231}-2}{115}
Divide 4+4\sqrt{231} by -230.
x=\frac{4-4\sqrt{231}}{-230}
Now solve the equation x=\frac{4±4\sqrt{231}}{-230} when ± is minus. Subtract 4\sqrt{231} from 4.
x=\frac{2\sqrt{231}-2}{115}
Divide 4-4\sqrt{231} by -230.
x=\frac{-2\sqrt{231}-2}{115} x=\frac{2\sqrt{231}-2}{115}
The equation is now solved.
-115x^{2}-4x+8=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-115x^{2}-4x+8-8=-8
Subtract 8 from both sides of the equation.
-115x^{2}-4x=-8
Subtracting 8 from itself leaves 0.
\frac{-115x^{2}-4x}{-115}=-\frac{8}{-115}
Divide both sides by -115.
x^{2}+\left(-\frac{4}{-115}\right)x=-\frac{8}{-115}
Dividing by -115 undoes the multiplication by -115.
x^{2}+\frac{4}{115}x=-\frac{8}{-115}
Divide -4 by -115.
x^{2}+\frac{4}{115}x=\frac{8}{115}
Divide -8 by -115.
x^{2}+\frac{4}{115}x+\left(\frac{2}{115}\right)^{2}=\frac{8}{115}+\left(\frac{2}{115}\right)^{2}
Divide \frac{4}{115}, the coefficient of the x term, by 2 to get \frac{2}{115}. Then add the square of \frac{2}{115} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{4}{115}x+\frac{4}{13225}=\frac{8}{115}+\frac{4}{13225}
Square \frac{2}{115} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{4}{115}x+\frac{4}{13225}=\frac{924}{13225}
Add \frac{8}{115} to \frac{4}{13225} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{2}{115}\right)^{2}=\frac{924}{13225}
Factor x^{2}+\frac{4}{115}x+\frac{4}{13225}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{2}{115}\right)^{2}}=\sqrt{\frac{924}{13225}}
Take the square root of both sides of the equation.
x+\frac{2}{115}=\frac{2\sqrt{231}}{115} x+\frac{2}{115}=-\frac{2\sqrt{231}}{115}
Simplify.
x=\frac{2\sqrt{231}-2}{115} x=\frac{-2\sqrt{231}-2}{115}
Subtract \frac{2}{115} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}