Evaluate
\frac{188}{15}\approx 12.533333333
Factor
\frac{2 ^ {2} \cdot 47}{3 \cdot 5} = 12\frac{8}{15} = 12.533333333333333
Share
Copied to clipboard
4+16+\frac{32}{10}-\frac{64}{6}
Subtract 4 from 8 to get 4.
20+\frac{32}{10}-\frac{64}{6}
Add 4 and 16 to get 20.
20+\frac{16}{5}-\frac{64}{6}
Reduce the fraction \frac{32}{10} to lowest terms by extracting and canceling out 2.
\frac{100}{5}+\frac{16}{5}-\frac{64}{6}
Convert 20 to fraction \frac{100}{5}.
\frac{100+16}{5}-\frac{64}{6}
Since \frac{100}{5} and \frac{16}{5} have the same denominator, add them by adding their numerators.
\frac{116}{5}-\frac{64}{6}
Add 100 and 16 to get 116.
\frac{116}{5}-\frac{32}{3}
Reduce the fraction \frac{64}{6} to lowest terms by extracting and canceling out 2.
\frac{348}{15}-\frac{160}{15}
Least common multiple of 5 and 3 is 15. Convert \frac{116}{5} and \frac{32}{3} to fractions with denominator 15.
\frac{348-160}{15}
Since \frac{348}{15} and \frac{160}{15} have the same denominator, subtract them by subtracting their numerators.
\frac{188}{15}
Subtract 160 from 348 to get 188.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}