Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

-2x^{2}-2x+8=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-2\right)\times 8}}{2\left(-2\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-2\right)\times 8}}{2\left(-2\right)}
Square -2.
x=\frac{-\left(-2\right)±\sqrt{4+8\times 8}}{2\left(-2\right)}
Multiply -4 times -2.
x=\frac{-\left(-2\right)±\sqrt{4+64}}{2\left(-2\right)}
Multiply 8 times 8.
x=\frac{-\left(-2\right)±\sqrt{68}}{2\left(-2\right)}
Add 4 to 64.
x=\frac{-\left(-2\right)±2\sqrt{17}}{2\left(-2\right)}
Take the square root of 68.
x=\frac{2±2\sqrt{17}}{2\left(-2\right)}
The opposite of -2 is 2.
x=\frac{2±2\sqrt{17}}{-4}
Multiply 2 times -2.
x=\frac{2\sqrt{17}+2}{-4}
Now solve the equation x=\frac{2±2\sqrt{17}}{-4} when ± is plus. Add 2 to 2\sqrt{17}.
x=\frac{-\sqrt{17}-1}{2}
Divide 2+2\sqrt{17} by -4.
x=\frac{2-2\sqrt{17}}{-4}
Now solve the equation x=\frac{2±2\sqrt{17}}{-4} when ± is minus. Subtract 2\sqrt{17} from 2.
x=\frac{\sqrt{17}-1}{2}
Divide 2-2\sqrt{17} by -4.
-2x^{2}-2x+8=-2\left(x-\frac{-\sqrt{17}-1}{2}\right)\left(x-\frac{\sqrt{17}-1}{2}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-1-\sqrt{17}}{2} for x_{1} and \frac{-1+\sqrt{17}}{2} for x_{2}.