Evaluate
\frac{4093}{180}\approx 22.738888889
Factor
\frac{4093}{2 ^ {2} \cdot 3 ^ {2} \cdot 5} = 22\frac{133}{180} = 22.738888888888887
Share
Copied to clipboard
8-\frac{3+2}{3}+\frac{2\times 6+1}{6}\times 10-\frac{2\times 30+7}{30}-\frac{1\times 60+1}{60}\times \frac{1\times 3+2}{3}+\frac{2\times 2+1}{2}-\frac{3\times 6+5}{6}
Multiply 1 and 3 to get 3.
8-\frac{5}{3}+\frac{2\times 6+1}{6}\times 10-\frac{2\times 30+7}{30}-\frac{1\times 60+1}{60}\times \frac{1\times 3+2}{3}+\frac{2\times 2+1}{2}-\frac{3\times 6+5}{6}
Add 3 and 2 to get 5.
\frac{24}{3}-\frac{5}{3}+\frac{2\times 6+1}{6}\times 10-\frac{2\times 30+7}{30}-\frac{1\times 60+1}{60}\times \frac{1\times 3+2}{3}+\frac{2\times 2+1}{2}-\frac{3\times 6+5}{6}
Convert 8 to fraction \frac{24}{3}.
\frac{24-5}{3}+\frac{2\times 6+1}{6}\times 10-\frac{2\times 30+7}{30}-\frac{1\times 60+1}{60}\times \frac{1\times 3+2}{3}+\frac{2\times 2+1}{2}-\frac{3\times 6+5}{6}
Since \frac{24}{3} and \frac{5}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{19}{3}+\frac{2\times 6+1}{6}\times 10-\frac{2\times 30+7}{30}-\frac{1\times 60+1}{60}\times \frac{1\times 3+2}{3}+\frac{2\times 2+1}{2}-\frac{3\times 6+5}{6}
Subtract 5 from 24 to get 19.
\frac{19}{3}+\frac{12+1}{6}\times 10-\frac{2\times 30+7}{30}-\frac{1\times 60+1}{60}\times \frac{1\times 3+2}{3}+\frac{2\times 2+1}{2}-\frac{3\times 6+5}{6}
Multiply 2 and 6 to get 12.
\frac{19}{3}+\frac{13}{6}\times 10-\frac{2\times 30+7}{30}-\frac{1\times 60+1}{60}\times \frac{1\times 3+2}{3}+\frac{2\times 2+1}{2}-\frac{3\times 6+5}{6}
Add 12 and 1 to get 13.
\frac{19}{3}+\frac{13\times 10}{6}-\frac{2\times 30+7}{30}-\frac{1\times 60+1}{60}\times \frac{1\times 3+2}{3}+\frac{2\times 2+1}{2}-\frac{3\times 6+5}{6}
Express \frac{13}{6}\times 10 as a single fraction.
\frac{19}{3}+\frac{130}{6}-\frac{2\times 30+7}{30}-\frac{1\times 60+1}{60}\times \frac{1\times 3+2}{3}+\frac{2\times 2+1}{2}-\frac{3\times 6+5}{6}
Multiply 13 and 10 to get 130.
\frac{19}{3}+\frac{65}{3}-\frac{2\times 30+7}{30}-\frac{1\times 60+1}{60}\times \frac{1\times 3+2}{3}+\frac{2\times 2+1}{2}-\frac{3\times 6+5}{6}
Reduce the fraction \frac{130}{6} to lowest terms by extracting and canceling out 2.
\frac{19+65}{3}-\frac{2\times 30+7}{30}-\frac{1\times 60+1}{60}\times \frac{1\times 3+2}{3}+\frac{2\times 2+1}{2}-\frac{3\times 6+5}{6}
Since \frac{19}{3} and \frac{65}{3} have the same denominator, add them by adding their numerators.
\frac{84}{3}-\frac{2\times 30+7}{30}-\frac{1\times 60+1}{60}\times \frac{1\times 3+2}{3}+\frac{2\times 2+1}{2}-\frac{3\times 6+5}{6}
Add 19 and 65 to get 84.
28-\frac{2\times 30+7}{30}-\frac{1\times 60+1}{60}\times \frac{1\times 3+2}{3}+\frac{2\times 2+1}{2}-\frac{3\times 6+5}{6}
Divide 84 by 3 to get 28.
28-\frac{60+7}{30}-\frac{1\times 60+1}{60}\times \frac{1\times 3+2}{3}+\frac{2\times 2+1}{2}-\frac{3\times 6+5}{6}
Multiply 2 and 30 to get 60.
28-\frac{67}{30}-\frac{1\times 60+1}{60}\times \frac{1\times 3+2}{3}+\frac{2\times 2+1}{2}-\frac{3\times 6+5}{6}
Add 60 and 7 to get 67.
\frac{840}{30}-\frac{67}{30}-\frac{1\times 60+1}{60}\times \frac{1\times 3+2}{3}+\frac{2\times 2+1}{2}-\frac{3\times 6+5}{6}
Convert 28 to fraction \frac{840}{30}.
\frac{840-67}{30}-\frac{1\times 60+1}{60}\times \frac{1\times 3+2}{3}+\frac{2\times 2+1}{2}-\frac{3\times 6+5}{6}
Since \frac{840}{30} and \frac{67}{30} have the same denominator, subtract them by subtracting their numerators.
\frac{773}{30}-\frac{1\times 60+1}{60}\times \frac{1\times 3+2}{3}+\frac{2\times 2+1}{2}-\frac{3\times 6+5}{6}
Subtract 67 from 840 to get 773.
\frac{773}{30}-\frac{60+1}{60}\times \frac{1\times 3+2}{3}+\frac{2\times 2+1}{2}-\frac{3\times 6+5}{6}
Multiply 1 and 60 to get 60.
\frac{773}{30}-\frac{61}{60}\times \frac{1\times 3+2}{3}+\frac{2\times 2+1}{2}-\frac{3\times 6+5}{6}
Add 60 and 1 to get 61.
\frac{773}{30}-\frac{61}{60}\times \frac{3+2}{3}+\frac{2\times 2+1}{2}-\frac{3\times 6+5}{6}
Multiply 1 and 3 to get 3.
\frac{773}{30}-\frac{61}{60}\times \frac{5}{3}+\frac{2\times 2+1}{2}-\frac{3\times 6+5}{6}
Add 3 and 2 to get 5.
\frac{773}{30}-\frac{61\times 5}{60\times 3}+\frac{2\times 2+1}{2}-\frac{3\times 6+5}{6}
Multiply \frac{61}{60} times \frac{5}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{773}{30}-\frac{305}{180}+\frac{2\times 2+1}{2}-\frac{3\times 6+5}{6}
Do the multiplications in the fraction \frac{61\times 5}{60\times 3}.
\frac{773}{30}-\frac{61}{36}+\frac{2\times 2+1}{2}-\frac{3\times 6+5}{6}
Reduce the fraction \frac{305}{180} to lowest terms by extracting and canceling out 5.
\frac{4638}{180}-\frac{305}{180}+\frac{2\times 2+1}{2}-\frac{3\times 6+5}{6}
Least common multiple of 30 and 36 is 180. Convert \frac{773}{30} and \frac{61}{36} to fractions with denominator 180.
\frac{4638-305}{180}+\frac{2\times 2+1}{2}-\frac{3\times 6+5}{6}
Since \frac{4638}{180} and \frac{305}{180} have the same denominator, subtract them by subtracting their numerators.
\frac{4333}{180}+\frac{2\times 2+1}{2}-\frac{3\times 6+5}{6}
Subtract 305 from 4638 to get 4333.
\frac{4333}{180}+\frac{4+1}{2}-\frac{3\times 6+5}{6}
Multiply 2 and 2 to get 4.
\frac{4333}{180}+\frac{5}{2}-\frac{3\times 6+5}{6}
Add 4 and 1 to get 5.
\frac{4333}{180}+\frac{450}{180}-\frac{3\times 6+5}{6}
Least common multiple of 180 and 2 is 180. Convert \frac{4333}{180} and \frac{5}{2} to fractions with denominator 180.
\frac{4333+450}{180}-\frac{3\times 6+5}{6}
Since \frac{4333}{180} and \frac{450}{180} have the same denominator, add them by adding their numerators.
\frac{4783}{180}-\frac{3\times 6+5}{6}
Add 4333 and 450 to get 4783.
\frac{4783}{180}-\frac{18+5}{6}
Multiply 3 and 6 to get 18.
\frac{4783}{180}-\frac{23}{6}
Add 18 and 5 to get 23.
\frac{4783}{180}-\frac{690}{180}
Least common multiple of 180 and 6 is 180. Convert \frac{4783}{180} and \frac{23}{6} to fractions with denominator 180.
\frac{4783-690}{180}
Since \frac{4783}{180} and \frac{690}{180} have the same denominator, subtract them by subtracting their numerators.
\frac{4093}{180}
Subtract 690 from 4783 to get 4093.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}