Solve for x (complex solution)
x = \frac{11}{2} = 5\frac{1}{2} = 5.5
x=\frac{31+3\sqrt{3}i}{4}\approx 7.75+1.299038106i
x=\frac{-3\sqrt{3}i+31}{4}\approx 7.75-1.299038106i
Solve for x
x = \frac{11}{2} = 5\frac{1}{2} = 5.5
Graph
Share
Copied to clipboard
8x^{3}-168x^{2}+1176x-2717=0
Expand the expression.
±\frac{2717}{8},±\frac{2717}{4},±\frac{2717}{2},±2717,±\frac{247}{8},±\frac{247}{4},±\frac{247}{2},±247,±\frac{209}{8},±\frac{209}{4},±\frac{209}{2},±209,±\frac{143}{8},±\frac{143}{4},±\frac{143}{2},±143,±\frac{19}{8},±\frac{19}{4},±\frac{19}{2},±19,±\frac{13}{8},±\frac{13}{4},±\frac{13}{2},±13,±\frac{11}{8},±\frac{11}{4},±\frac{11}{2},±11,±\frac{1}{8},±\frac{1}{4},±\frac{1}{2},±1
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term -2717 and q divides the leading coefficient 8. List all candidates \frac{p}{q}.
x=\frac{11}{2}
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
4x^{2}-62x+247=0
By Factor theorem, x-k is a factor of the polynomial for each root k. Divide 8x^{3}-168x^{2}+1176x-2717 by 2\left(x-\frac{11}{2}\right)=2x-11 to get 4x^{2}-62x+247. Solve the equation where the result equals to 0.
x=\frac{-\left(-62\right)±\sqrt{\left(-62\right)^{2}-4\times 4\times 247}}{2\times 4}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 4 for a, -62 for b, and 247 for c in the quadratic formula.
x=\frac{62±\sqrt{-108}}{8}
Do the calculations.
x=\frac{-3i\sqrt{3}+31}{4} x=\frac{31+3i\sqrt{3}}{4}
Solve the equation 4x^{2}-62x+247=0 when ± is plus and when ± is minus.
x=\frac{11}{2} x=\frac{-3i\sqrt{3}+31}{4} x=\frac{31+3i\sqrt{3}}{4}
List all found solutions.
8x^{3}-168x^{2}+1176x-2717=0
Expand the expression.
±\frac{2717}{8},±\frac{2717}{4},±\frac{2717}{2},±2717,±\frac{247}{8},±\frac{247}{4},±\frac{247}{2},±247,±\frac{209}{8},±\frac{209}{4},±\frac{209}{2},±209,±\frac{143}{8},±\frac{143}{4},±\frac{143}{2},±143,±\frac{19}{8},±\frac{19}{4},±\frac{19}{2},±19,±\frac{13}{8},±\frac{13}{4},±\frac{13}{2},±13,±\frac{11}{8},±\frac{11}{4},±\frac{11}{2},±11,±\frac{1}{8},±\frac{1}{4},±\frac{1}{2},±1
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term -2717 and q divides the leading coefficient 8. List all candidates \frac{p}{q}.
x=\frac{11}{2}
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
4x^{2}-62x+247=0
By Factor theorem, x-k is a factor of the polynomial for each root k. Divide 8x^{3}-168x^{2}+1176x-2717 by 2\left(x-\frac{11}{2}\right)=2x-11 to get 4x^{2}-62x+247. Solve the equation where the result equals to 0.
x=\frac{-\left(-62\right)±\sqrt{\left(-62\right)^{2}-4\times 4\times 247}}{2\times 4}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 4 for a, -62 for b, and 247 for c in the quadratic formula.
x=\frac{62±\sqrt{-108}}{8}
Do the calculations.
x\in \emptyset
Since the square root of a negative number is not defined in the real field, there are no solutions.
x=\frac{11}{2}
List all found solutions.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}