Solve for x
x=\frac{\sqrt{1537}-5}{126}\approx 0.271465012
Graph
Share
Copied to clipboard
\left(8x\right)^{2}=\left(\sqrt{x^{2}-5x+6}\right)^{2}
Square both sides of the equation.
8^{2}x^{2}=\left(\sqrt{x^{2}-5x+6}\right)^{2}
Expand \left(8x\right)^{2}.
64x^{2}=\left(\sqrt{x^{2}-5x+6}\right)^{2}
Calculate 8 to the power of 2 and get 64.
64x^{2}=x^{2}-5x+6
Calculate \sqrt{x^{2}-5x+6} to the power of 2 and get x^{2}-5x+6.
64x^{2}-x^{2}=-5x+6
Subtract x^{2} from both sides.
63x^{2}=-5x+6
Combine 64x^{2} and -x^{2} to get 63x^{2}.
63x^{2}+5x=6
Add 5x to both sides.
63x^{2}+5x-6=0
Subtract 6 from both sides.
x=\frac{-5±\sqrt{5^{2}-4\times 63\left(-6\right)}}{2\times 63}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 63 for a, 5 for b, and -6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\times 63\left(-6\right)}}{2\times 63}
Square 5.
x=\frac{-5±\sqrt{25-252\left(-6\right)}}{2\times 63}
Multiply -4 times 63.
x=\frac{-5±\sqrt{25+1512}}{2\times 63}
Multiply -252 times -6.
x=\frac{-5±\sqrt{1537}}{2\times 63}
Add 25 to 1512.
x=\frac{-5±\sqrt{1537}}{126}
Multiply 2 times 63.
x=\frac{\sqrt{1537}-5}{126}
Now solve the equation x=\frac{-5±\sqrt{1537}}{126} when ± is plus. Add -5 to \sqrt{1537}.
x=\frac{-\sqrt{1537}-5}{126}
Now solve the equation x=\frac{-5±\sqrt{1537}}{126} when ± is minus. Subtract \sqrt{1537} from -5.
x=\frac{\sqrt{1537}-5}{126} x=\frac{-\sqrt{1537}-5}{126}
The equation is now solved.
8\times \frac{\sqrt{1537}-5}{126}=\sqrt{\left(\frac{\sqrt{1537}-5}{126}\right)^{2}-5\times \frac{\sqrt{1537}-5}{126}+6}
Substitute \frac{\sqrt{1537}-5}{126} for x in the equation 8x=\sqrt{x^{2}-5x+6}.
\frac{4}{63}\times 1537^{\frac{1}{2}}-\frac{20}{63}=\frac{4}{63}\times 1537^{\frac{1}{2}}-\frac{20}{63}
Simplify. The value x=\frac{\sqrt{1537}-5}{126} satisfies the equation.
8\times \frac{-\sqrt{1537}-5}{126}=\sqrt{\left(\frac{-\sqrt{1537}-5}{126}\right)^{2}-5\times \frac{-\sqrt{1537}-5}{126}+6}
Substitute \frac{-\sqrt{1537}-5}{126} for x in the equation 8x=\sqrt{x^{2}-5x+6}.
-\frac{4}{63}\times 1537^{\frac{1}{2}}-\frac{20}{63}=\frac{4}{63}\times 1537^{\frac{1}{2}}+\frac{20}{63}
Simplify. The value x=\frac{-\sqrt{1537}-5}{126} does not satisfy the equation because the left and the right hand side have opposite signs.
x=\frac{\sqrt{1537}-5}{126}
Equation 8x=\sqrt{x^{2}-5x+6} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}