Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(8x\right)^{2}=\left(\sqrt{x^{2}-1}\right)^{2}
Square both sides of the equation.
8^{2}x^{2}=\left(\sqrt{x^{2}-1}\right)^{2}
Expand \left(8x\right)^{2}.
64x^{2}=\left(\sqrt{x^{2}-1}\right)^{2}
Calculate 8 to the power of 2 and get 64.
64x^{2}=x^{2}-1
Calculate \sqrt{x^{2}-1} to the power of 2 and get x^{2}-1.
64x^{2}-x^{2}=-1
Subtract x^{2} from both sides.
63x^{2}=-1
Combine 64x^{2} and -x^{2} to get 63x^{2}.
x^{2}=-\frac{1}{63}
Divide both sides by 63.
x=\frac{\sqrt{7}i}{21} x=-\frac{\sqrt{7}i}{21}
The equation is now solved.
8\times \frac{\sqrt{7}i}{21}=\sqrt{\left(\frac{\sqrt{7}i}{21}\right)^{2}-1}
Substitute \frac{\sqrt{7}i}{21} for x in the equation 8x=\sqrt{x^{2}-1}.
\frac{8}{21}i\times 7^{\frac{1}{2}}=\frac{8}{21}i\times 7^{\frac{1}{2}}
Simplify. The value x=\frac{\sqrt{7}i}{21} satisfies the equation.
8\left(-\frac{\sqrt{7}i}{21}\right)=\sqrt{\left(-\frac{\sqrt{7}i}{21}\right)^{2}-1}
Substitute -\frac{\sqrt{7}i}{21} for x in the equation 8x=\sqrt{x^{2}-1}.
-\frac{8}{21}i\times 7^{\frac{1}{2}}=\frac{8}{21}i\times 7^{\frac{1}{2}}
Simplify. The value x=-\frac{\sqrt{7}i}{21} does not satisfy the equation.
x=\frac{\sqrt{7}i}{21}
Equation 8x=\sqrt{x^{2}-1} has a unique solution.