Solve for x (complex solution)
x=\frac{\sqrt{7}i}{21}\approx 0.125988158i
Graph
Share
Copied to clipboard
\left(8x\right)^{2}=\left(\sqrt{x^{2}-1}\right)^{2}
Square both sides of the equation.
8^{2}x^{2}=\left(\sqrt{x^{2}-1}\right)^{2}
Expand \left(8x\right)^{2}.
64x^{2}=\left(\sqrt{x^{2}-1}\right)^{2}
Calculate 8 to the power of 2 and get 64.
64x^{2}=x^{2}-1
Calculate \sqrt{x^{2}-1} to the power of 2 and get x^{2}-1.
64x^{2}-x^{2}=-1
Subtract x^{2} from both sides.
63x^{2}=-1
Combine 64x^{2} and -x^{2} to get 63x^{2}.
x^{2}=-\frac{1}{63}
Divide both sides by 63.
x=\frac{\sqrt{7}i}{21} x=-\frac{\sqrt{7}i}{21}
The equation is now solved.
8\times \frac{\sqrt{7}i}{21}=\sqrt{\left(\frac{\sqrt{7}i}{21}\right)^{2}-1}
Substitute \frac{\sqrt{7}i}{21} for x in the equation 8x=\sqrt{x^{2}-1}.
\frac{8}{21}i\times 7^{\frac{1}{2}}=\frac{8}{21}i\times 7^{\frac{1}{2}}
Simplify. The value x=\frac{\sqrt{7}i}{21} satisfies the equation.
8\left(-\frac{\sqrt{7}i}{21}\right)=\sqrt{\left(-\frac{\sqrt{7}i}{21}\right)^{2}-1}
Substitute -\frac{\sqrt{7}i}{21} for x in the equation 8x=\sqrt{x^{2}-1}.
-\frac{8}{21}i\times 7^{\frac{1}{2}}=\frac{8}{21}i\times 7^{\frac{1}{2}}
Simplify. The value x=-\frac{\sqrt{7}i}{21} does not satisfy the equation.
x=\frac{\sqrt{7}i}{21}
Equation 8x=\sqrt{x^{2}-1} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}