Solve for x (complex solution)
x\in \frac{1+\sqrt{3}i}{4},-\frac{1}{2},\frac{-\sqrt{3}i+1}{4},-1+\sqrt{3}i,-\sqrt{3}i-1,2
Solve for x
x=2
x=-\frac{1}{2}=-0.5
Graph
Share
Copied to clipboard
x^{3}-\frac{1}{x^{3}}=\frac{63}{8}
Divide both sides by 8.
8x^{3}x^{3}-8=63x^{3}
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 8x^{3}, the least common multiple of x^{3},8.
8x^{6}-8=63x^{3}
To multiply powers of the same base, add their exponents. Add 3 and 3 to get 6.
8x^{6}-8-63x^{3}=0
Subtract 63x^{3} from both sides.
8t^{2}-63t-8=0
Substitute t for x^{3}.
t=\frac{-\left(-63\right)±\sqrt{\left(-63\right)^{2}-4\times 8\left(-8\right)}}{2\times 8}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 8 for a, -63 for b, and -8 for c in the quadratic formula.
t=\frac{63±65}{16}
Do the calculations.
t=8 t=-\frac{1}{8}
Solve the equation t=\frac{63±65}{16} when ± is plus and when ± is minus.
x=-1+\sqrt{3}i x=-\sqrt{3}i-1 x=2 x=-\frac{1}{2} x=\frac{1+\sqrt{3}i}{4} x=\frac{-\sqrt{3}i+1}{4}
Since x=t^{3}, the solutions are obtained by solving the equation for each t.
x^{3}-\frac{1}{x^{3}}=\frac{63}{8}
Divide both sides by 8.
8x^{3}x^{3}-8=63x^{3}
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 8x^{3}, the least common multiple of x^{3},8.
8x^{6}-8=63x^{3}
To multiply powers of the same base, add their exponents. Add 3 and 3 to get 6.
8x^{6}-8-63x^{3}=0
Subtract 63x^{3} from both sides.
8t^{2}-63t-8=0
Substitute t for x^{3}.
t=\frac{-\left(-63\right)±\sqrt{\left(-63\right)^{2}-4\times 8\left(-8\right)}}{2\times 8}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 8 for a, -63 for b, and -8 for c in the quadratic formula.
t=\frac{63±65}{16}
Do the calculations.
t=8 t=-\frac{1}{8}
Solve the equation t=\frac{63±65}{16} when ± is plus and when ± is minus.
x=2 x=-\frac{1}{2}
Since x=t^{3}, the solutions are obtained by evaluating x=\sqrt[3]{t} for each t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}