Solve for t
t<\frac{45}{8}
Share
Copied to clipboard
8t-24+9t<3\left(7+3t\right)
Use the distributive property to multiply 8 by t-3.
17t-24<3\left(7+3t\right)
Combine 8t and 9t to get 17t.
17t-24<21+9t
Use the distributive property to multiply 3 by 7+3t.
17t-24-9t<21
Subtract 9t from both sides.
8t-24<21
Combine 17t and -9t to get 8t.
8t<21+24
Add 24 to both sides.
8t<45
Add 21 and 24 to get 45.
t<\frac{45}{8}
Divide both sides by 8. Since 8 is positive, the inequality direction remains the same.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}